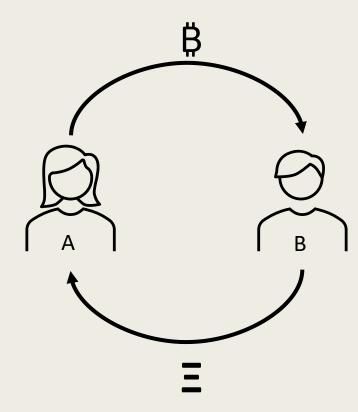
Cross Chain Swaps with Preferences

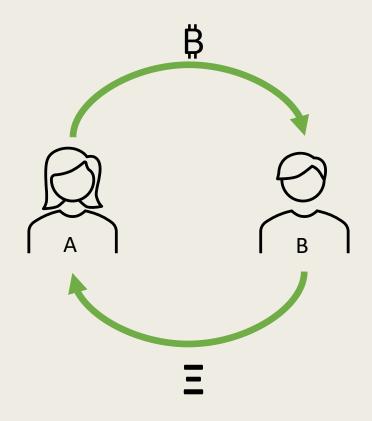
Eric Chan* Marek Chrobak Mohsen Lesani

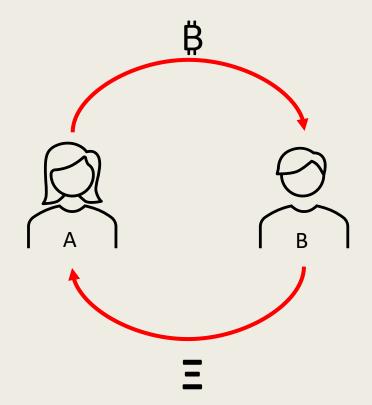
University of California at Riverside, USA

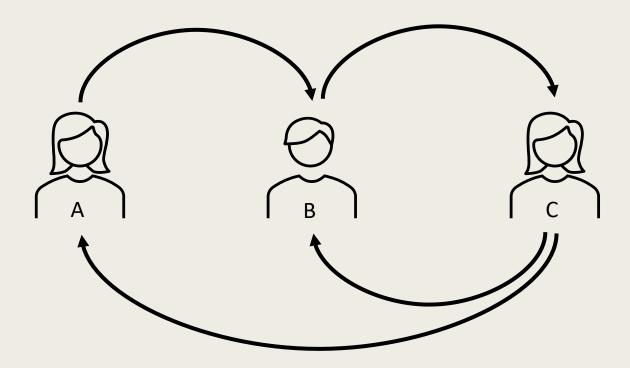
CSF 2023

Cross Chain Swap

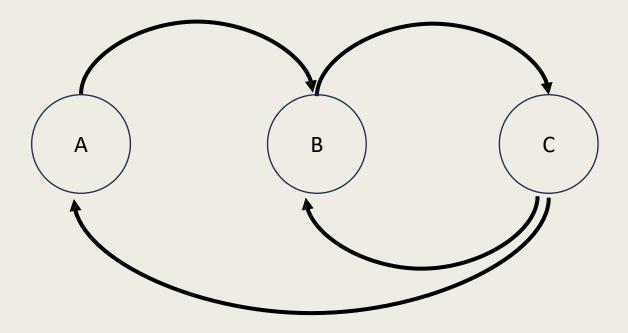


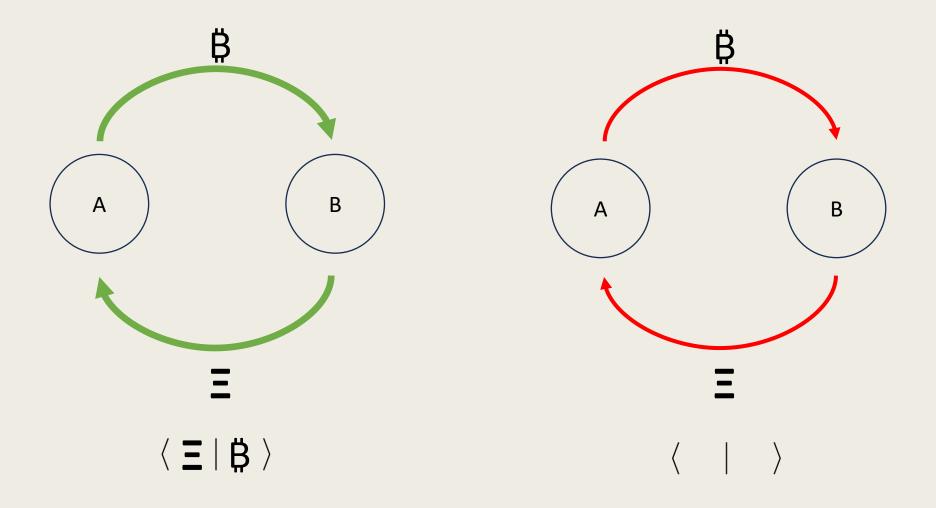




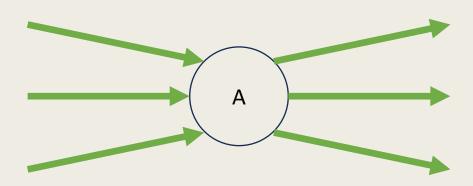


Formalization

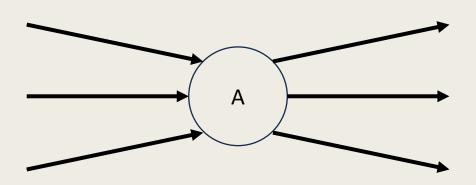




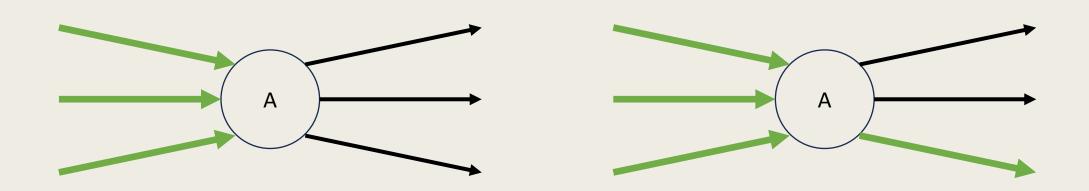
- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- Freeride: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)



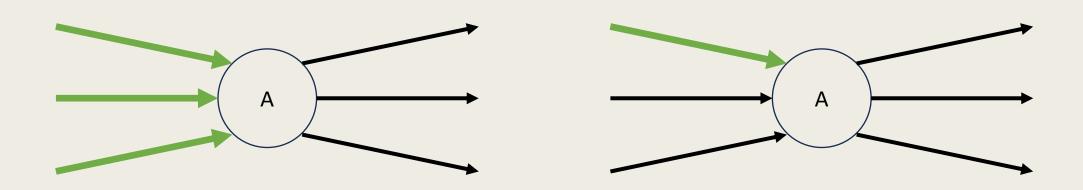
- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- FreeRide: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)



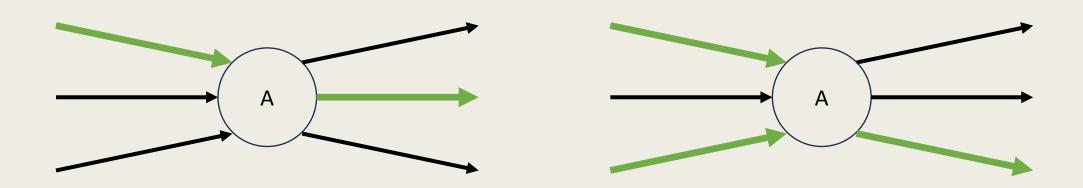
- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- FreeRide: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)



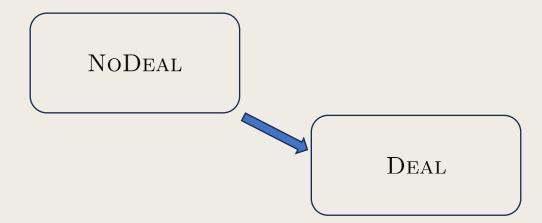
- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- FreeRide: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)



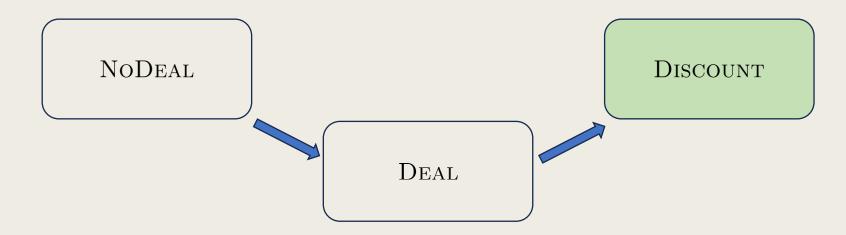
- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- Freeride: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)



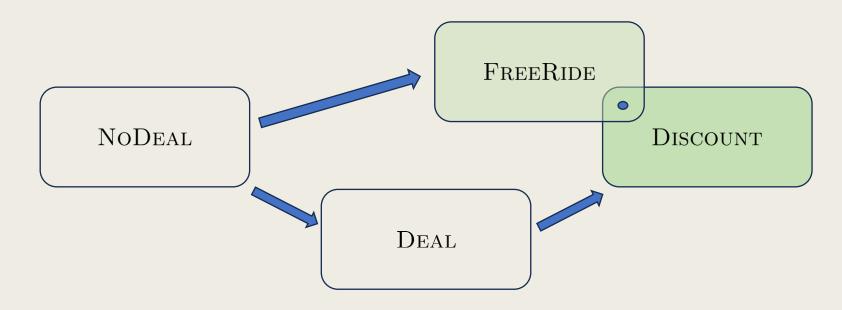
- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- FreeRide: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)



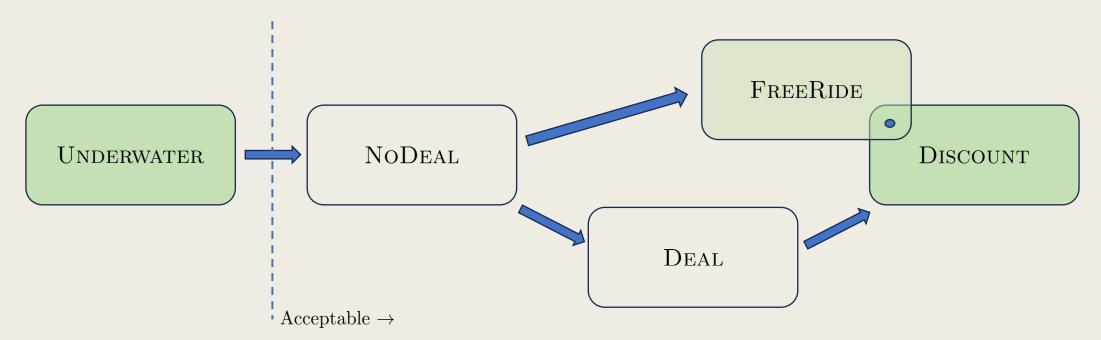
- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- FreeRide: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)



- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- FreeRide: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)



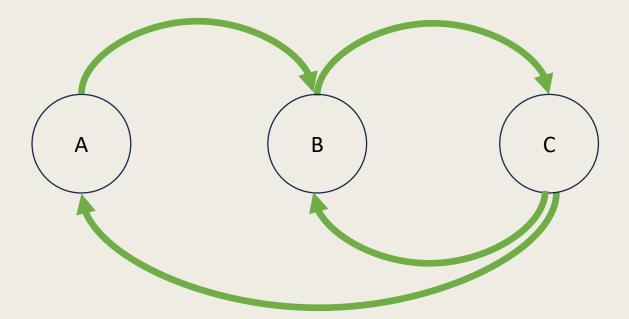
- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- FreeRide: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)



Protocol Properties

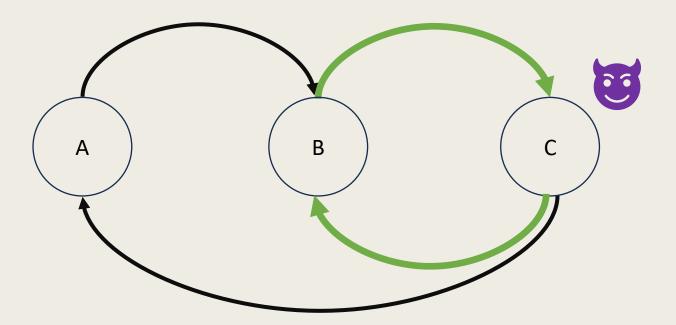
Atomic Protocol Properties

- Liveness: if every party follows \mathbb{P} , then every party finishes Deal
- Safety: if a party follows \mathbb{P} , then it finishes in an acceptable outcome
- Strong Nash Equilibria: No coalition improves its payoff by deviating from \mathbb{P}



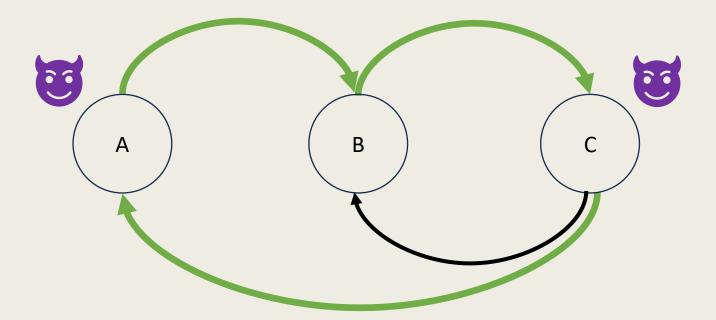
Atomic Protocol Properties

- Liveness: if every party follows P, then every party finishes Deal
- Safety: if a party follows \mathbb{P} , then it finishes in an acceptable outcome
- Strong Nash Equilibria: No coalition improves its payoff by deviating from \mathbb{P}



Atomic Protocol Properties

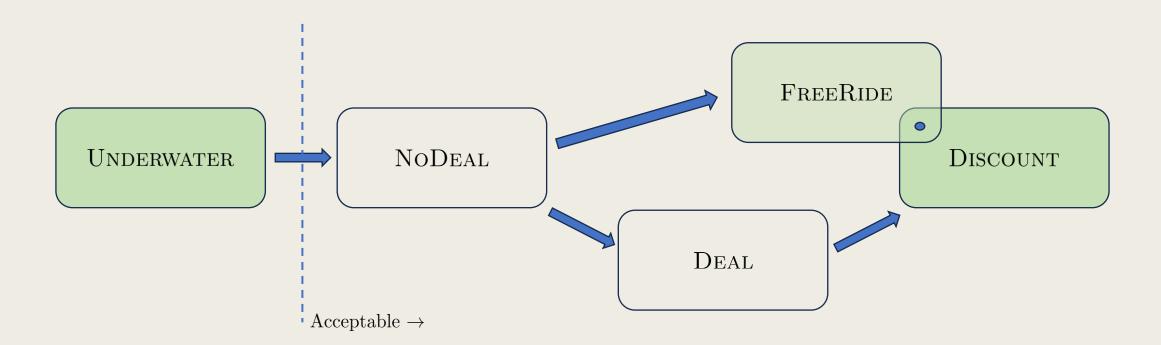
- Liveness: if every party follows P, then every party finishes Deal
- Safety: if a party follows \mathbb{P} , then it finishes in an acceptable outcome
- Strong Nash Equilibria: No coalition improves its payoff by deviating from \mathbb{P}



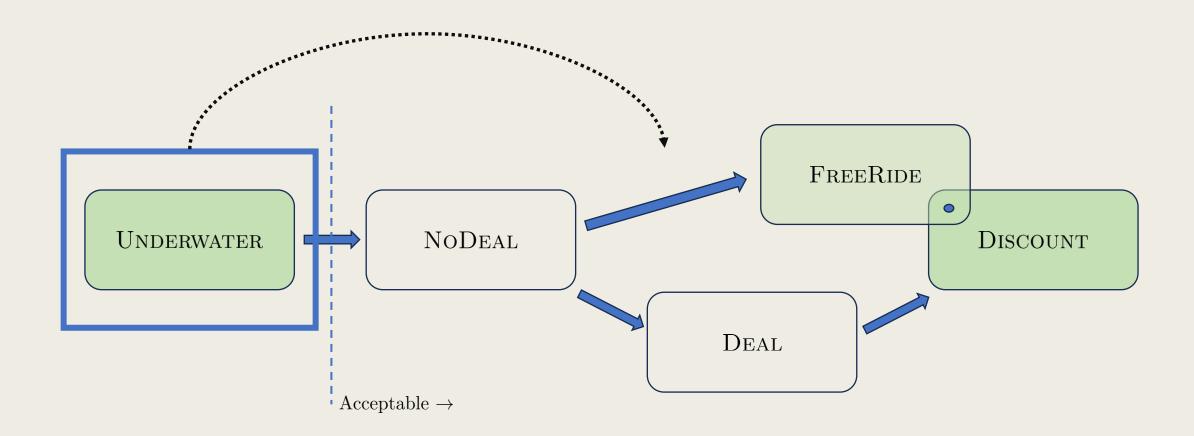
Herlihy's Protocol

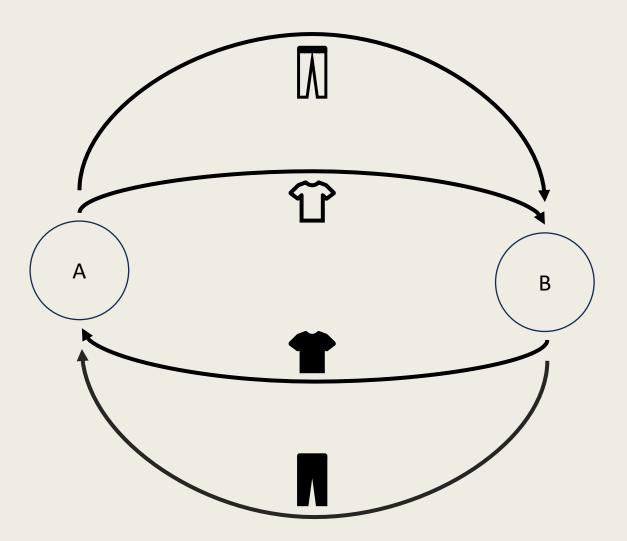
[Herlihy'18] gives an atomic protocol so long that:

- the swap digraph is strongly connected
- each party has the preference structure:

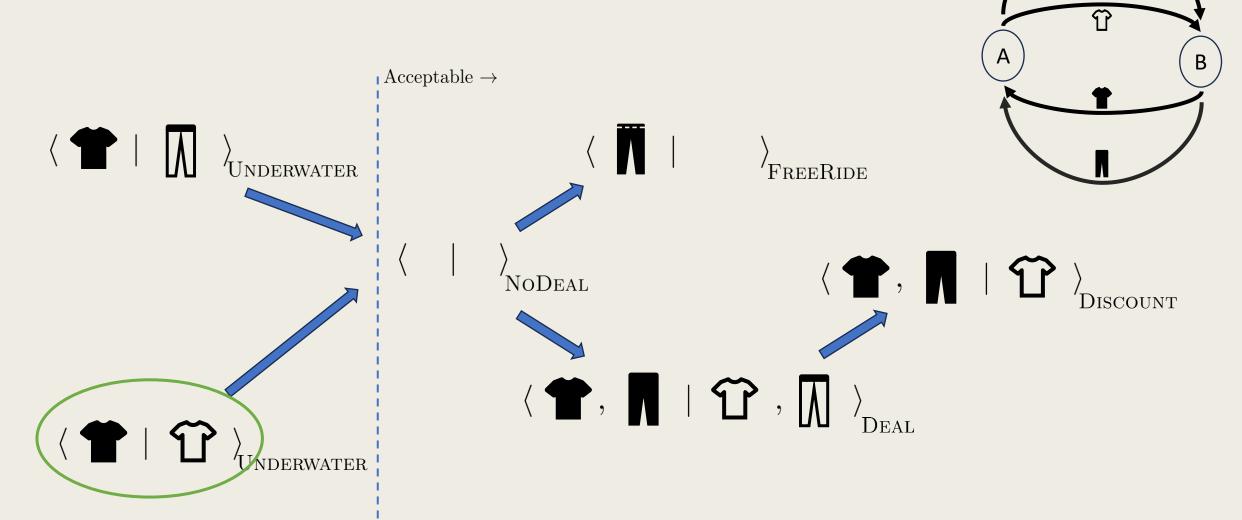


Can We Do Better?

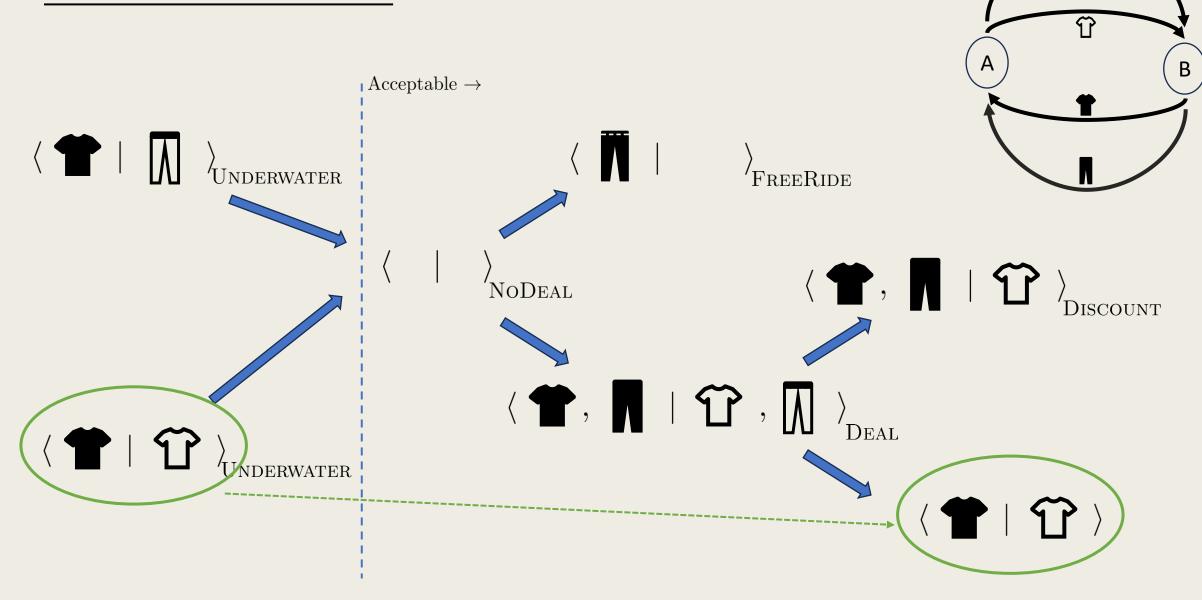


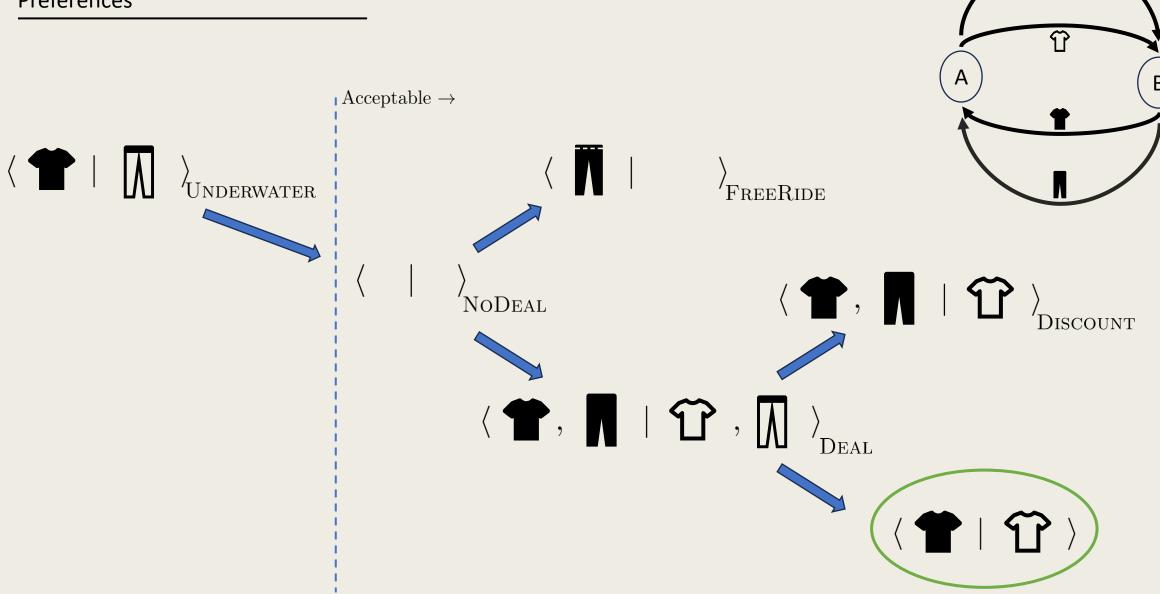


Preferences

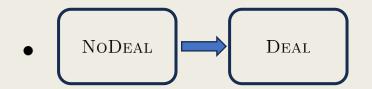


Preferences

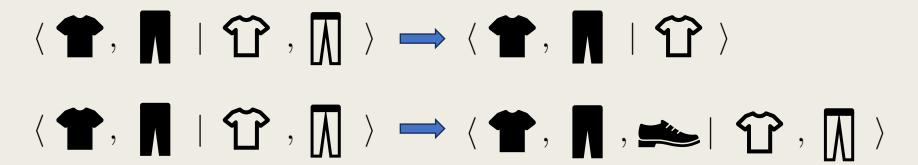




User-defined Preferences



• Inclusive Monotonicity:



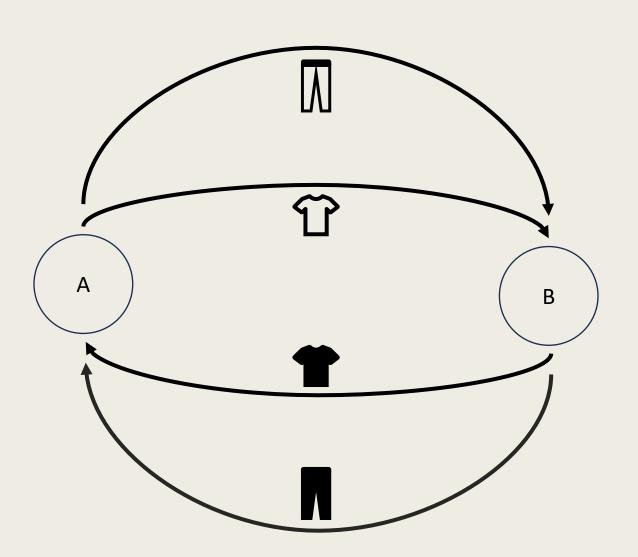
General Atomic Protocol?

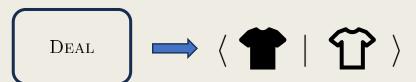
- Liveness: if every party follows \mathbb{P} , then every party finishes Deal or better
- Safety: if a party follows \mathbb{P} , then it finishes in an acceptable outcome
- Strong Nash Equilibria: No coalition improves its payoff by deviating from \mathbb{P}

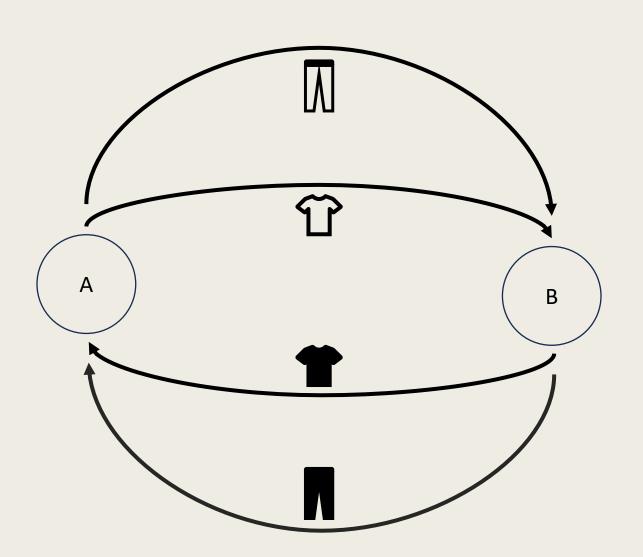
General Atomic Protocol?

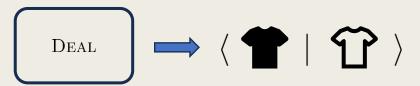
- Liveness: if every party follows \mathbb{P} , then every party finishes Deal or better
- Safety: if a party follows \mathbb{P} , then it finishes in an acceptable outcome
- Strong Nash Equilibria: No coalition improves its payoff by deviating from \mathbb{P}

No, there is no atomic protocol (scheme) that works for every swap system.

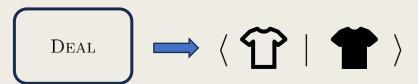


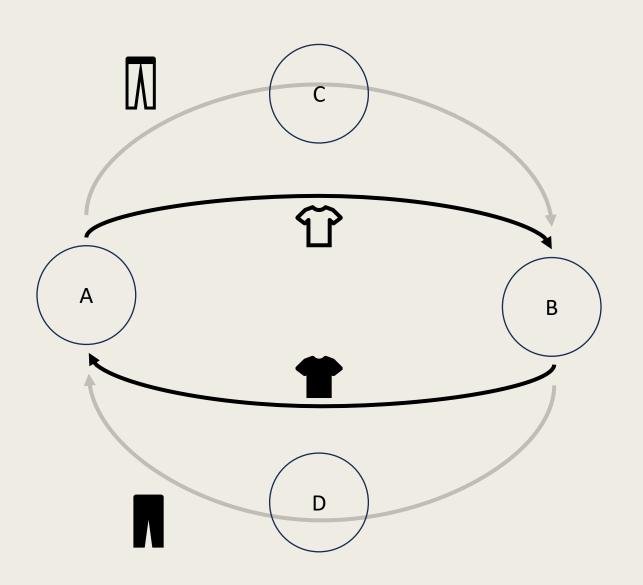


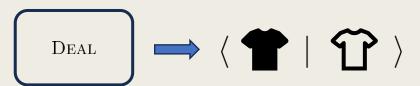




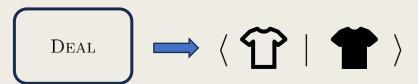
Preference of B:

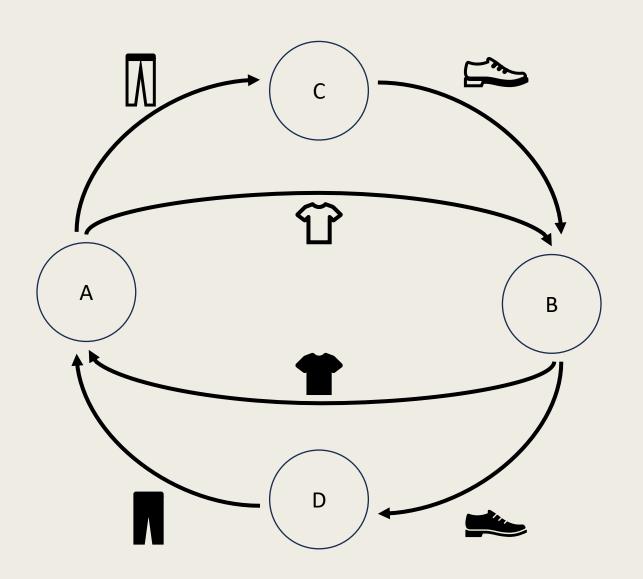


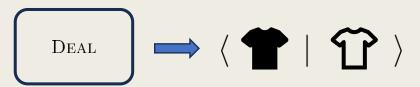




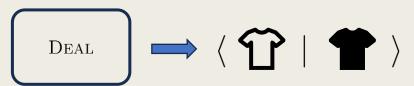
Preference of B:



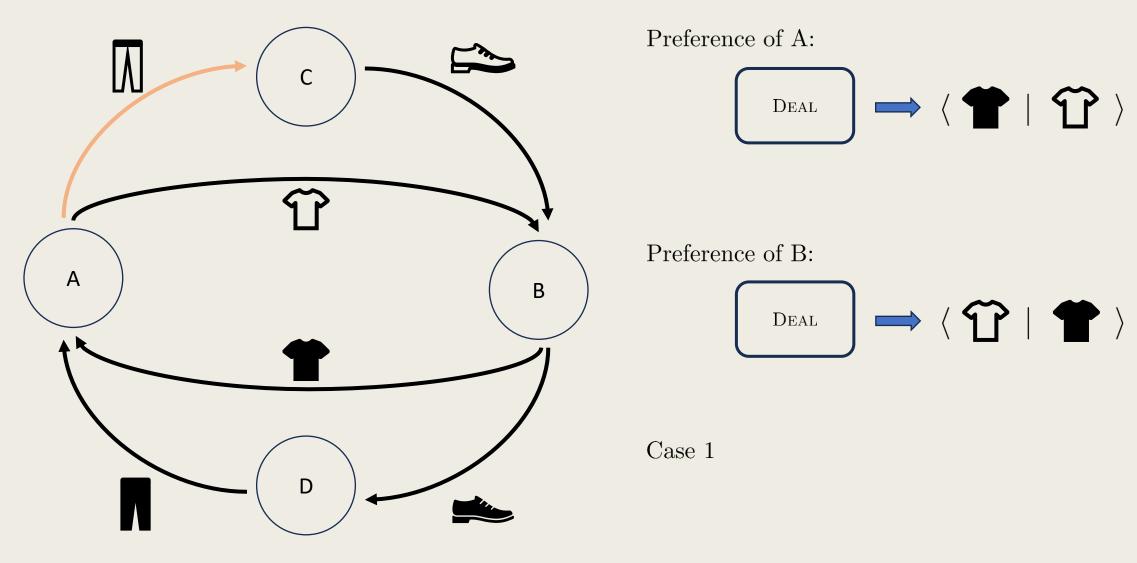




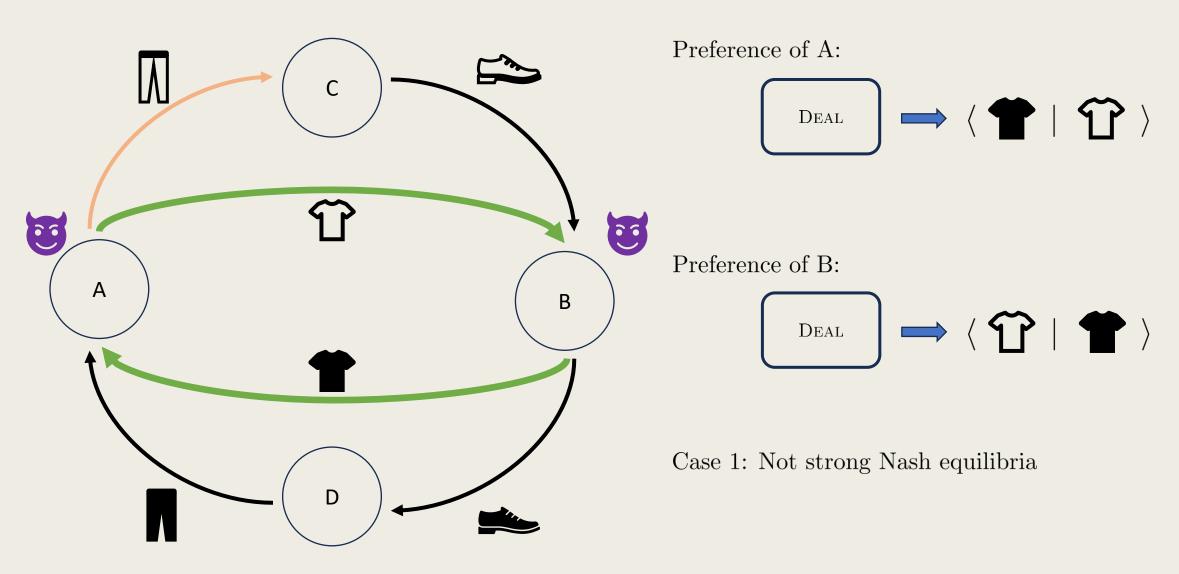
Preference of B:



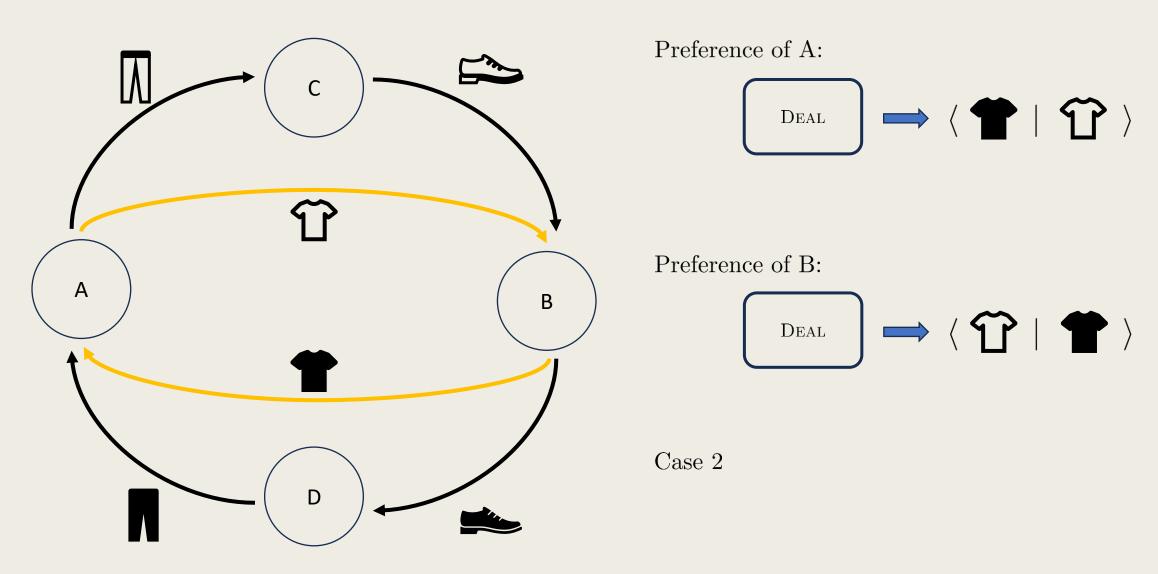
No General Atomic Protocol – Case 1

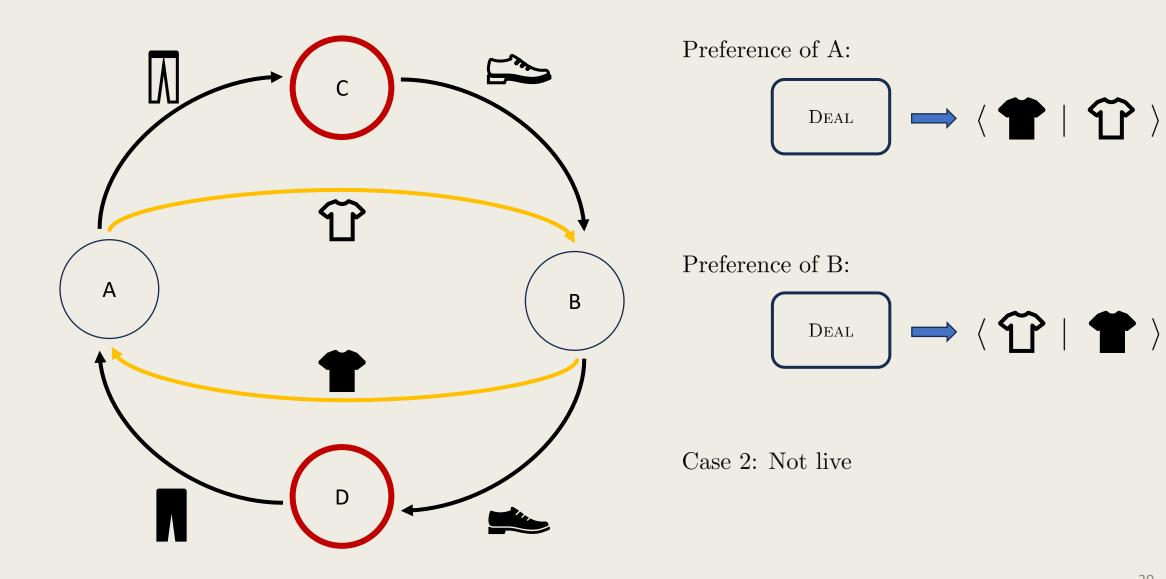


No General Atomic Protocol – Case 1



No General Atomic Protocol – Case 2

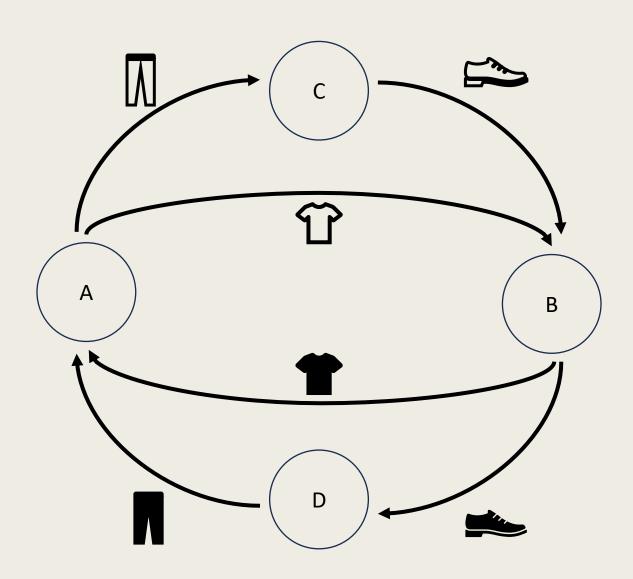


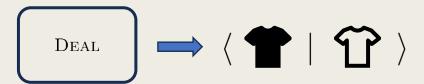


Sometimes, There Is a Protocol

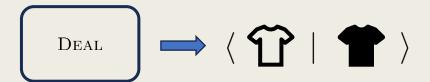
Theorem

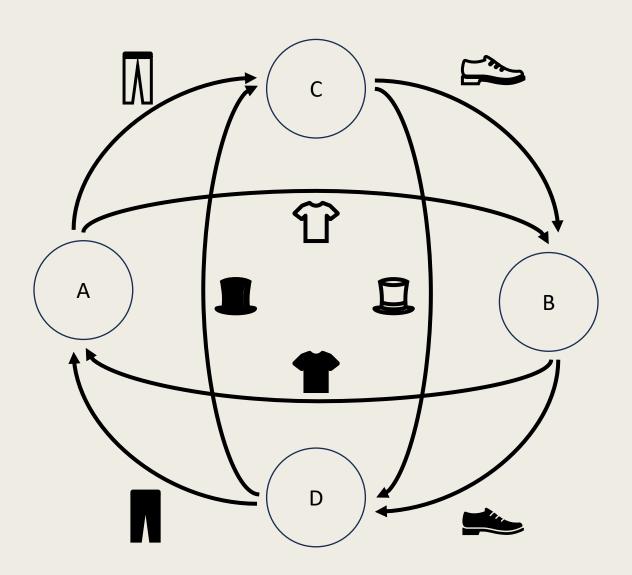
- G is piece-wise strongly connected and has no isolated vertices
- \bullet G dominates D
- \bullet no subgraph H of D strictly dominates G

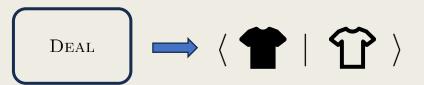




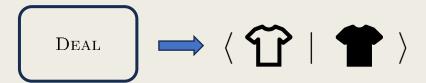
Preference of B:

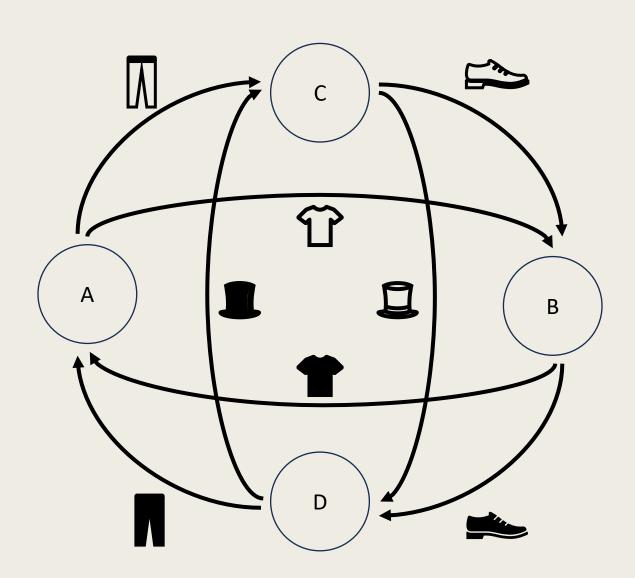


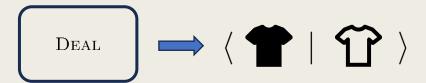




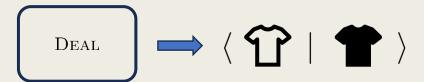
Preference of B:



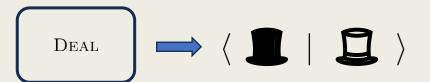




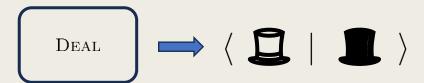
Preference of B:



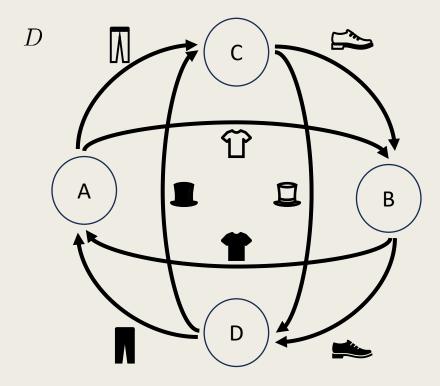
Preference of C:



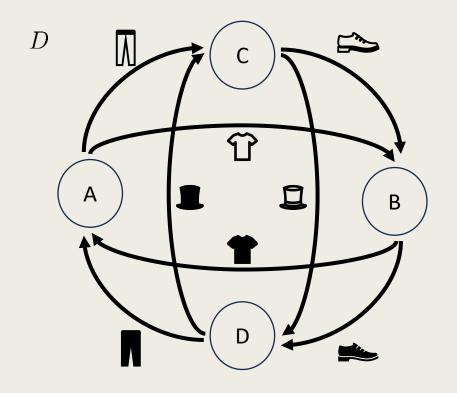
Preference of D:

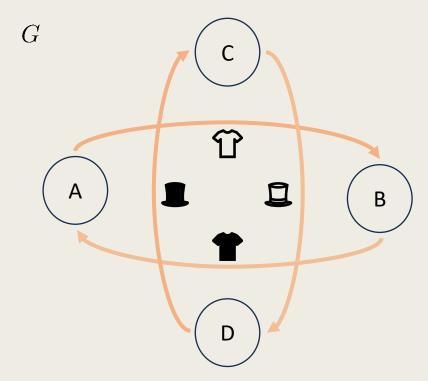


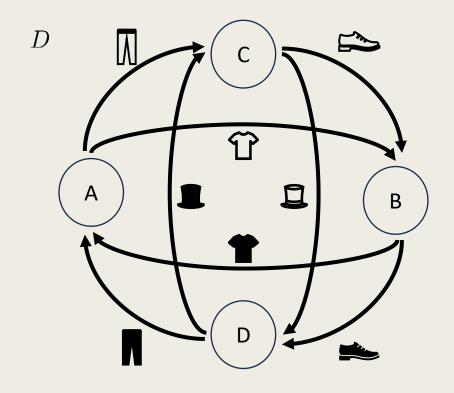
G is piece-wise strongly connected and has no isolated vertices

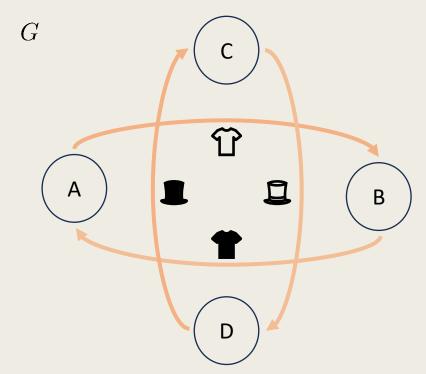


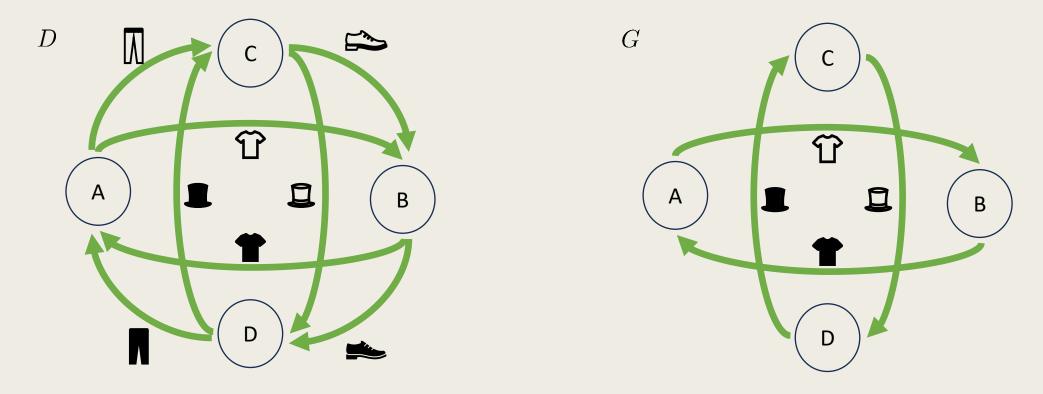
G is piece-wise strongly connected and has no isolated vertices

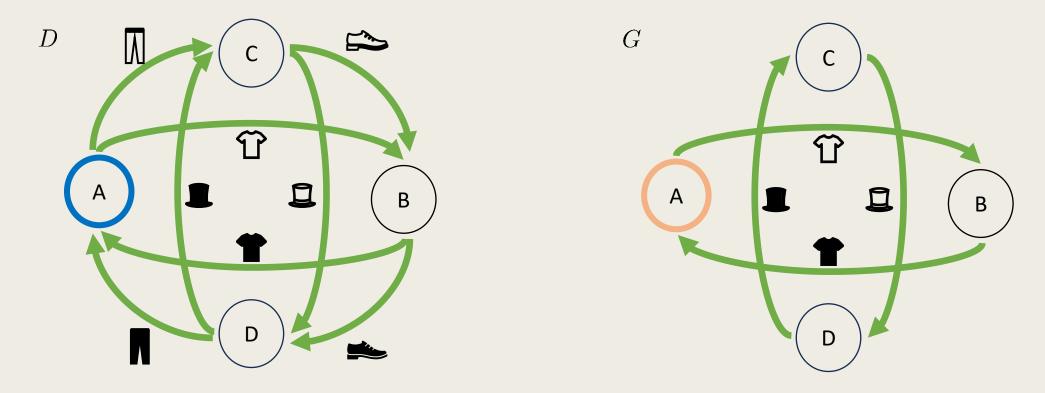


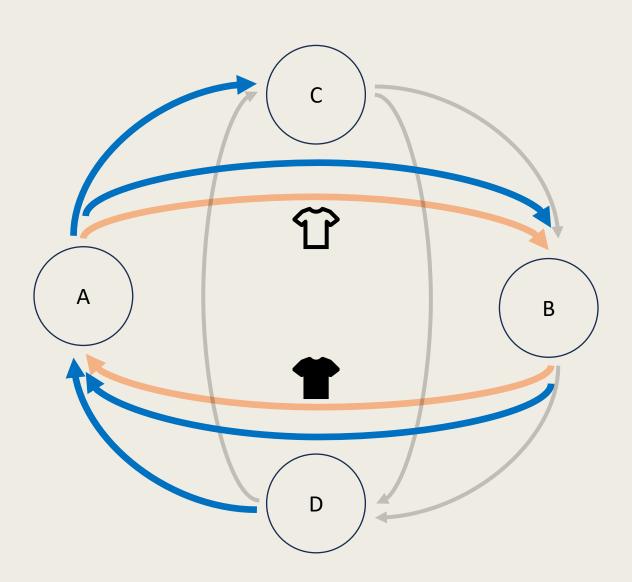


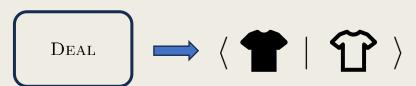


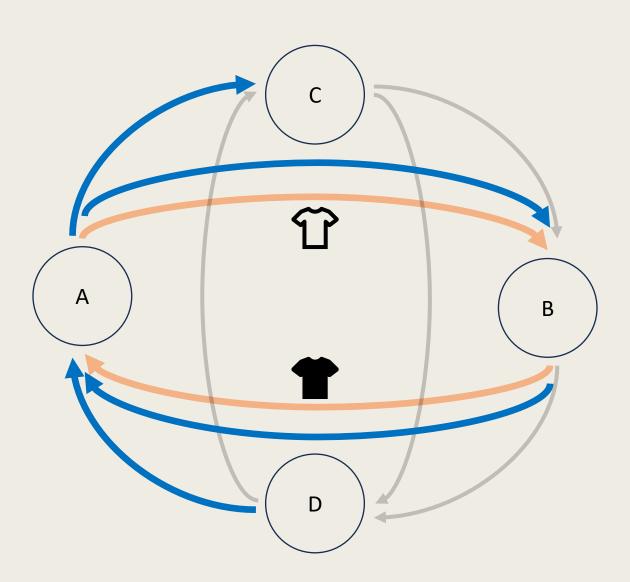




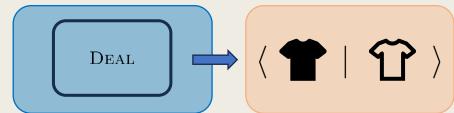


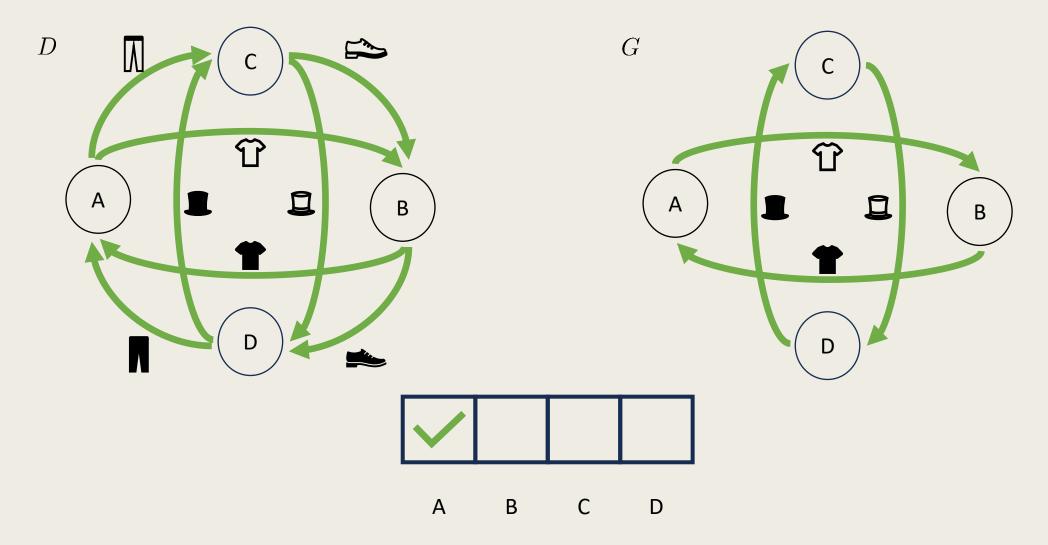


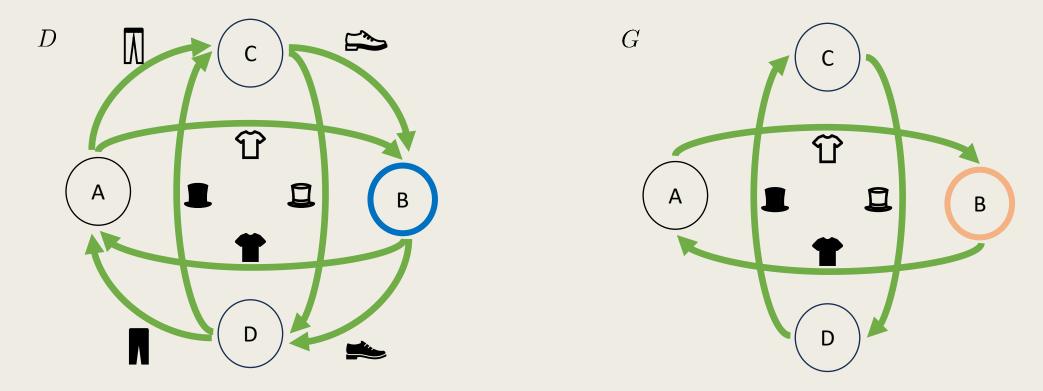


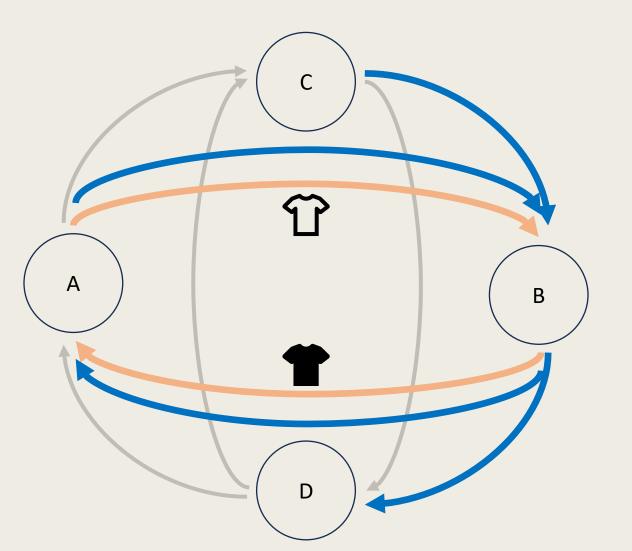


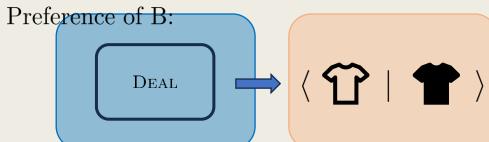
Preference of A:

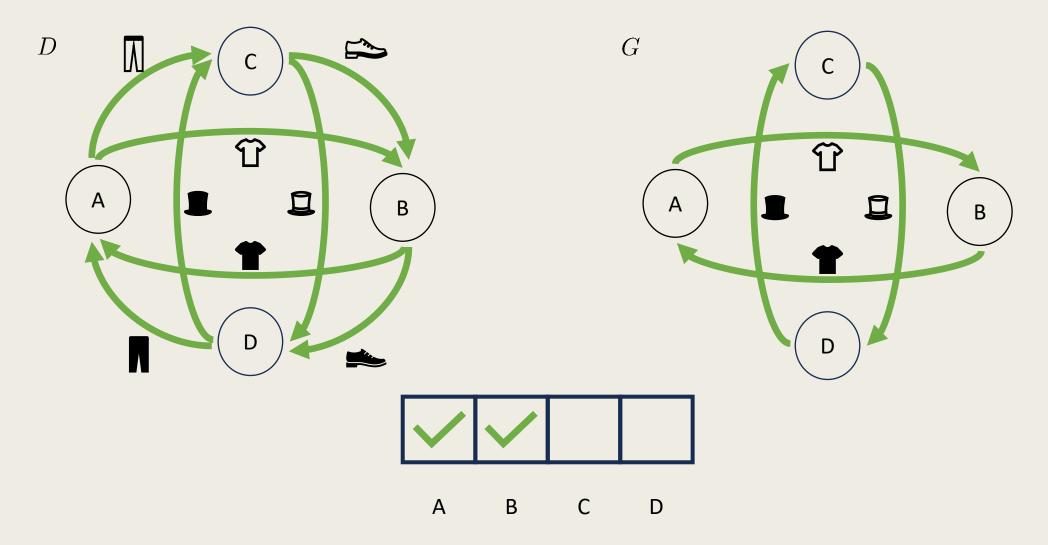


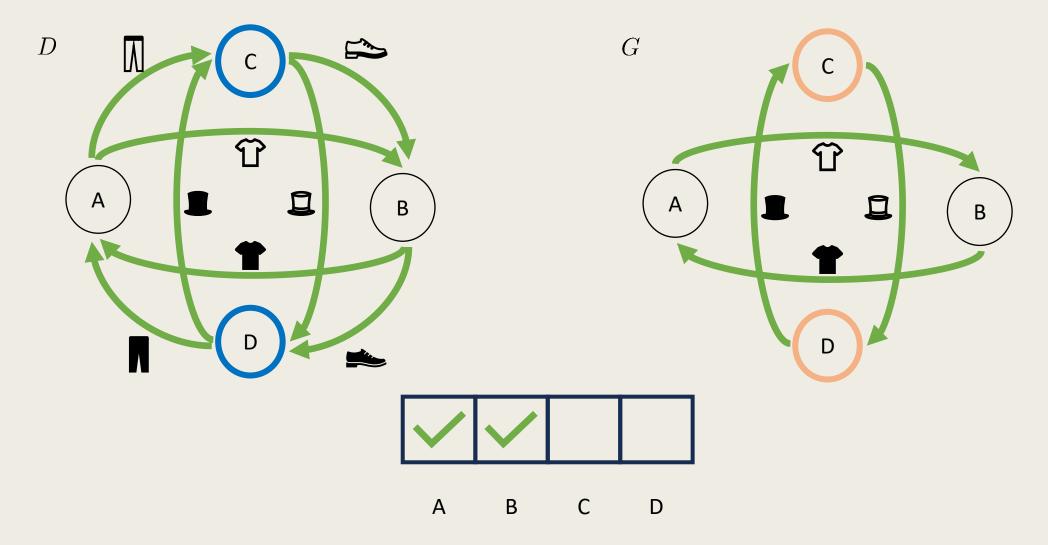


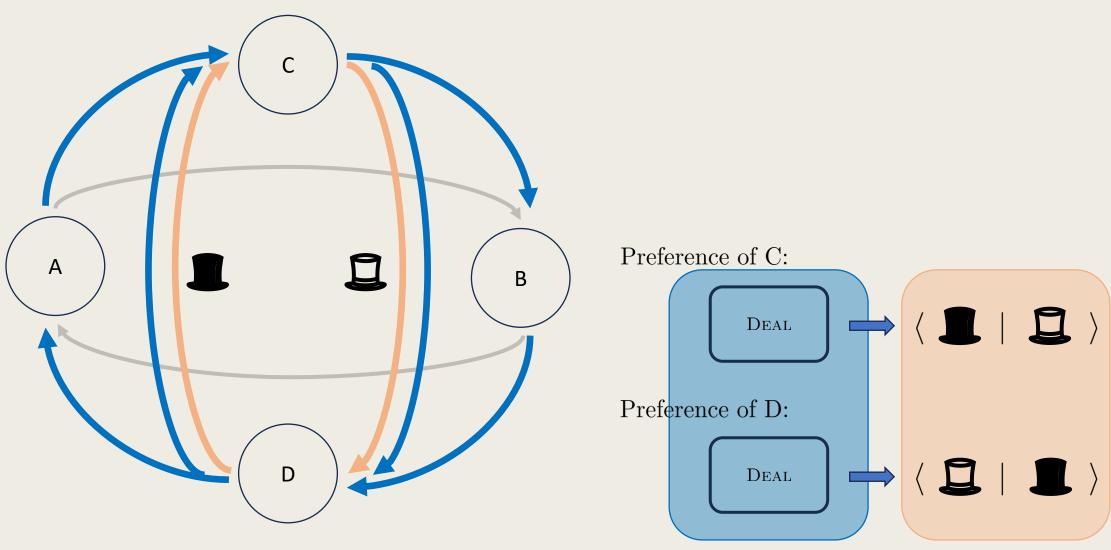


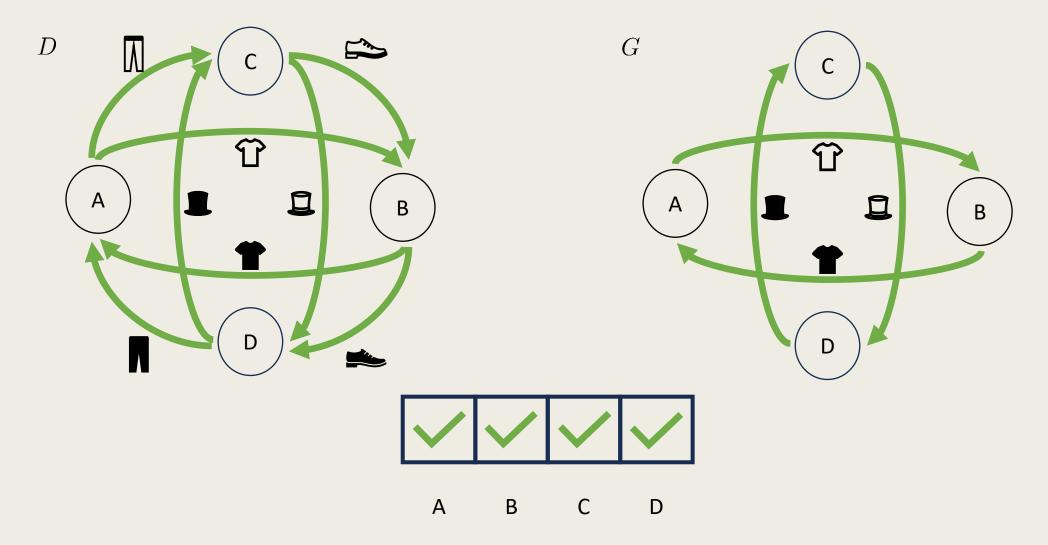


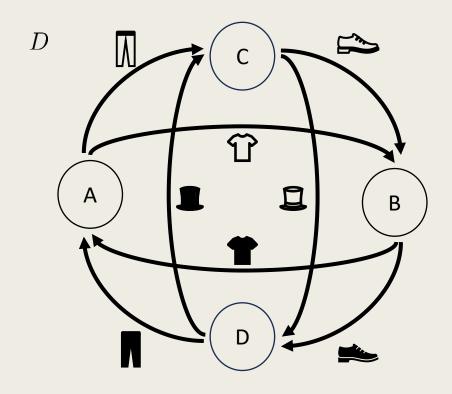


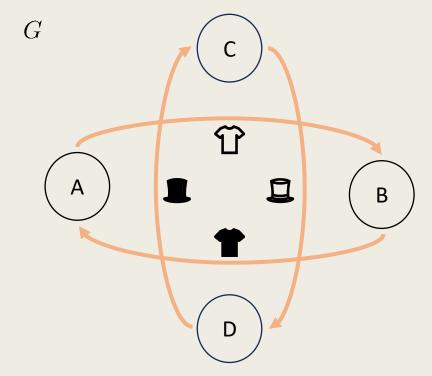


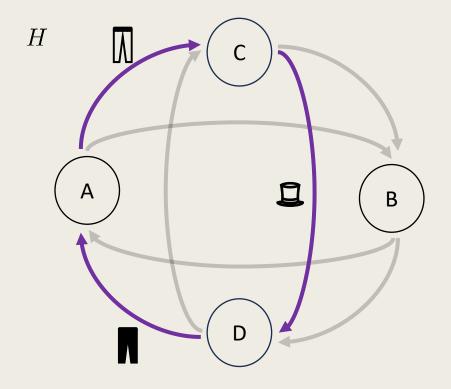


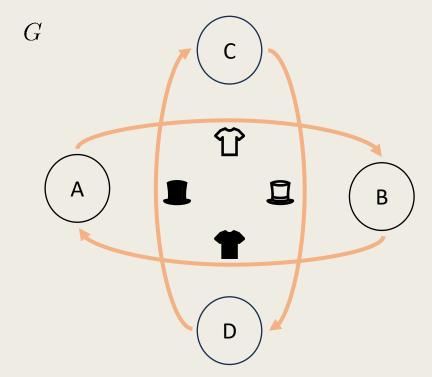


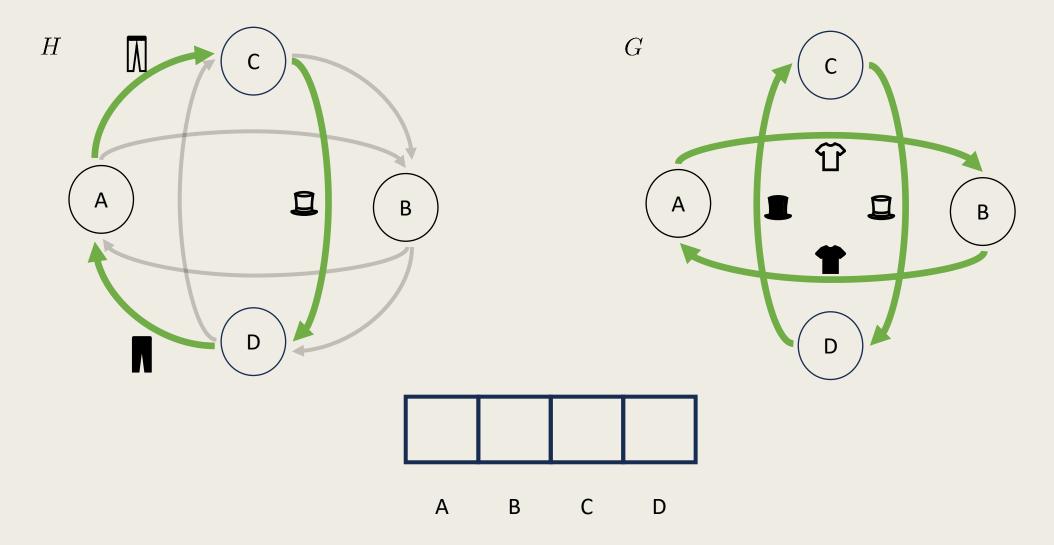


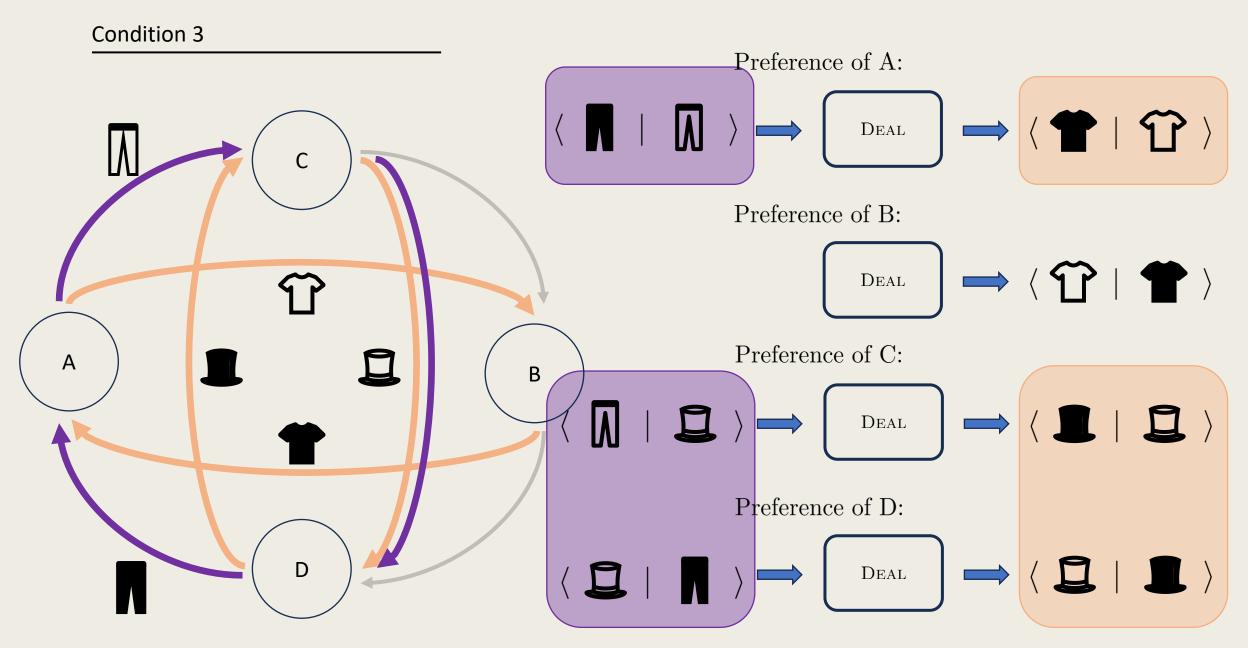


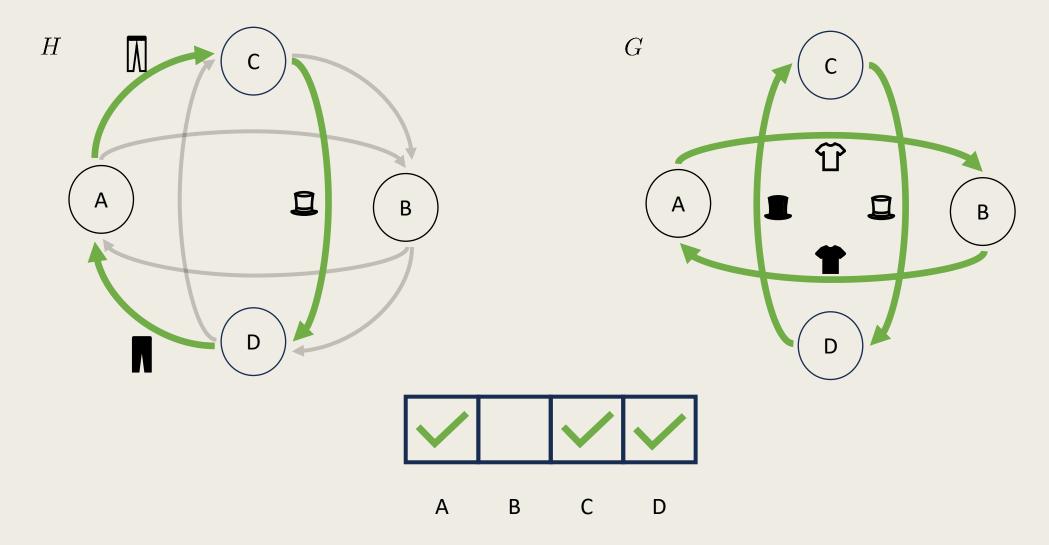


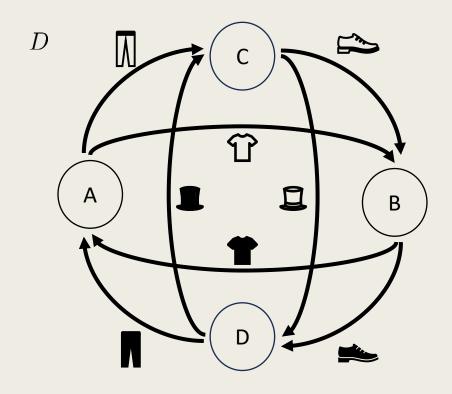


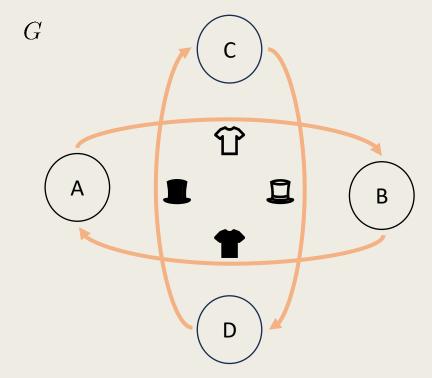




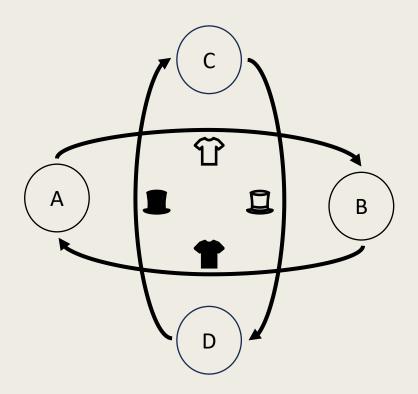


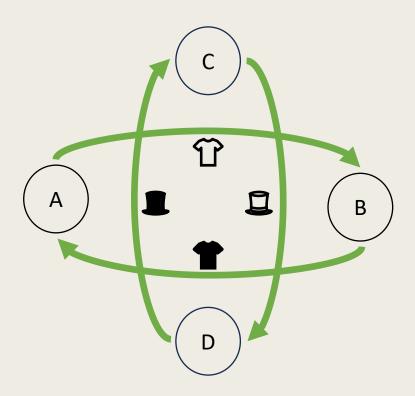


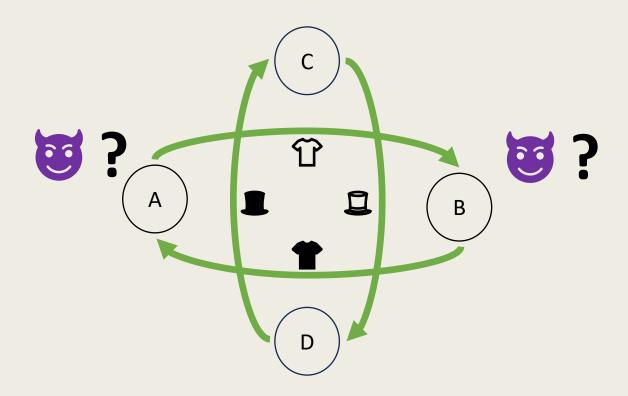




Protocol

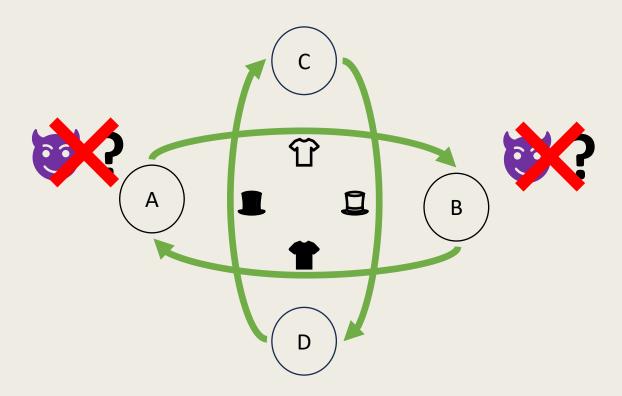






Applying Herlihy's Protocol

Condition 3: no subgraph H of D strictly dominates G



Complexity

SwapAtomic

SwapAtomic:

• input: swap system S = (D, P)

 \bullet output: Yes if S has an atomic swap protocol, otherwise No

SwapAtomic

SwapAtomic:

- input: swap system S = (D, P)
- ullet output: Yes if S has an atomic swap protocol, otherwise No

Theorem. SwapAtomic is Σ_2^{P} -complete.

- G is piece-wise strongly connected and has no isolated vertices
- \bullet G dominates D
- \bullet no subgraph H of D strictly dominates G

$$\exists G. \neg \exists H. \pi(G, H)$$

- G is piece-wise strongly connected and has no isolated vertices
- G dominates D
- no subgraph H of D strictly dominates G

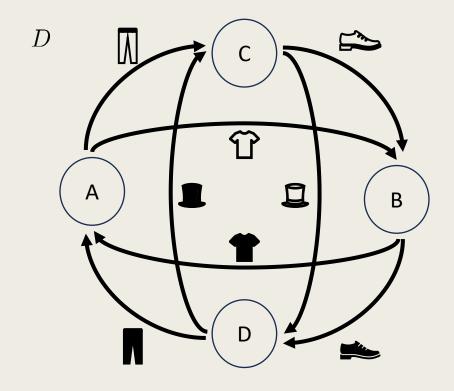
$$\exists G. \neg \exists H. \pi(G, H)$$

- G is piece-wise strongly connected and has no isolated vertices
- \bullet G dominates D
- no subgraph H of D strictly dominates G

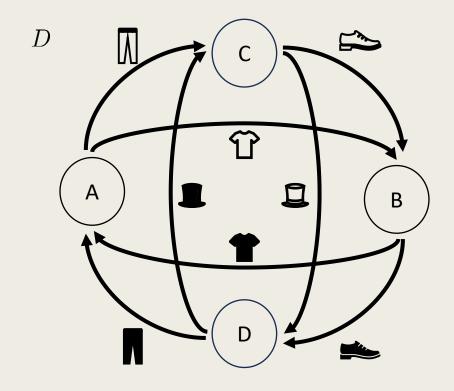
$$\exists G. \neg \exists H. \pi(G, H)$$

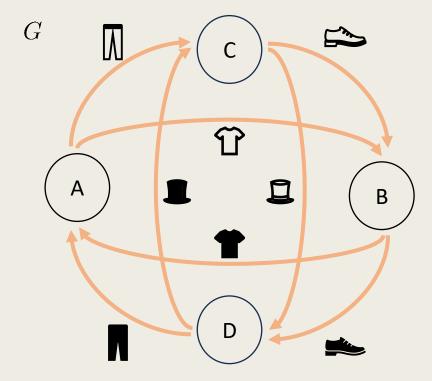
- G is piece-wise strongly connected and has no isolated vertices
- \bullet G dominates D
- \bullet no subgraph H of D strictly dominates G

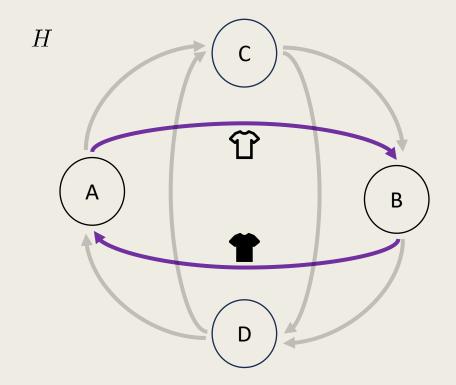
$$\exists G. \neg \exists H. \pi(G, H)$$

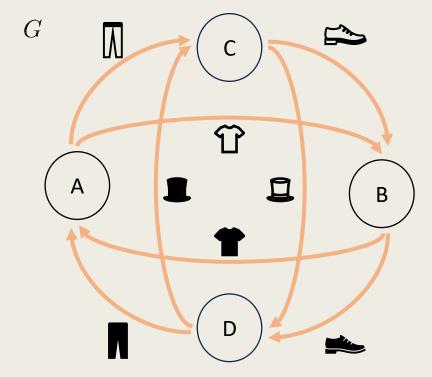












Summary

- Relax structure of preference posets
- Characterize when swap systems have an atomic protocol
- If there is an atomic protocol, we give one
- Complexity of deciding whether a swap system has an atomic protocol

Thank You