Cross Chain Swaps with Preferences

Eric Chan* Marek Chrobak Mohsen Lesani

University of California at Riverside, USA

CSF 2023

Cross Chain Swap

Formalization

- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- Freeride: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)

- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- FreeRide: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)

- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- FreeRide: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)

- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- FreeRide: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)

- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- Freeride: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)

- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- FreeRide: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)

- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- FreeRide: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)

- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- FreeRide: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)

- Deal: $\langle all \mid all \rangle$
- Nodeal: $\langle none \mid none \rangle$
- DISCOUNT: $\langle all \mid \neg all \rangle$
- FreeRide: $\langle \neg none \mid none \rangle$
- Underwater: $\langle \neg all \mid \neg none \rangle$ (everything else)

Protocol Properties

Atomic Protocol Properties

- Liveness: if every party follows \mathbb{P} , then every party finishes Deal
- Safety: if a party follows \mathbb{P} , then it finishes in an acceptable outcome
- Strong Nash Equilibria: No coalition improves its payoff by deviating from \mathbb{P}

Atomic Protocol Properties

- Liveness: if every party follows P, then every party finishes Deal
- Safety: if a party follows \mathbb{P} , then it finishes in an acceptable outcome
- Strong Nash Equilibria: No coalition improves its payoff by deviating from \mathbb{P}

Atomic Protocol Properties

- Liveness: if every party follows P, then every party finishes Deal
- Safety: if a party follows \mathbb{P} , then it finishes in an acceptable outcome
- Strong Nash Equilibria: No coalition improves its payoff by deviating from \mathbb{P}

Herlihy's Protocol

[Herlihy'18] gives an atomic protocol so long that:

- the swap digraph is strongly connected
- each party has the preference structure:

Can We Do Better?

Preferences

Preferences

User-defined Preferences

• Inclusive Monotonicity:

General Atomic Protocol?

- Liveness: if every party follows \mathbb{P} , then every party finishes Deal or better
- Safety: if a party follows \mathbb{P} , then it finishes in an acceptable outcome
- Strong Nash Equilibria: No coalition improves its payoff by deviating from \mathbb{P}

General Atomic Protocol?

- Liveness: if every party follows \mathbb{P} , then every party finishes Deal or better
- Safety: if a party follows \mathbb{P} , then it finishes in an acceptable outcome
- Strong Nash Equilibria: No coalition improves its payoff by deviating from \mathbb{P}

No, there is no atomic protocol (scheme) that works for every swap system.

Preference of B:

Preference of B:

Preference of B:

No General Atomic Protocol – Case 1

No General Atomic Protocol – Case 1

No General Atomic Protocol – Case 2

Sometimes, There Is a Protocol

Theorem

- G is piece-wise strongly connected and has no isolated vertices
- \bullet G dominates D
- \bullet no subgraph H of D strictly dominates G

Preference of B:

Preference of B:

Preference of B:

Preference of C:

Preference of D:

G is piece-wise strongly connected and has no isolated vertices

G is piece-wise strongly connected and has no isolated vertices

Preference of A:

Protocol

Applying Herlihy's Protocol

Condition 3: no subgraph H of D strictly dominates G

Complexity

SwapAtomic

SwapAtomic:

• input: swap system S = (D, P)

 \bullet output: Yes if S has an atomic swap protocol, otherwise No

SwapAtomic

SwapAtomic:

- input: swap system S = (D, P)
- ullet output: Yes if S has an atomic swap protocol, otherwise No

Theorem. SwapAtomic is Σ_2^{P} -complete.

- G is piece-wise strongly connected and has no isolated vertices
- \bullet G dominates D
- \bullet no subgraph H of D strictly dominates G

$$\exists G. \neg \exists H. \pi(G, H)$$

- G is piece-wise strongly connected and has no isolated vertices
- G dominates D
- no subgraph H of D strictly dominates G

$$\exists G. \neg \exists H. \pi(G, H)$$

- G is piece-wise strongly connected and has no isolated vertices
- \bullet G dominates D
- no subgraph H of D strictly dominates G

$$\exists G. \neg \exists H. \pi(G, H)$$

- G is piece-wise strongly connected and has no isolated vertices
- \bullet G dominates D
- \bullet no subgraph H of D strictly dominates G

$$\exists G. \neg \exists H. \pi(G, H)$$

Summary

- Relax structure of preference posets
- Characterize when swap systems have an atomic protocol
- If there is an atomic protocol, we give one
- Complexity of deciding whether a swap system has an atomic protocol

Thank You