
On the
(De)centralization
of FruitChains

Aikaterini-Panagiota Stouka, Nethermind
Thomas Zacharias, University of Glasgow

Bitcoin and PoW blockchain protocols

• Bitcoin and in general blockchain utilizes a distributed ledger of
transactions that is extended and maintained in a decentralized manner
without the need of a trusted party.
• Transactions are stored in blocks maintained by nodes in a peer–to-peer

network.
• Blocks form a chain; every block has a reference to the previous block.
• If more than one candidate chains have been created, the longest chain

will constitute the ledger.
• A new block is added to the ledger when a node, called miner, solves a

Proof of Work Puzzle that demands computational power.

Bitcoin and PoW blockchain protocols

• The miner creates an input that includes among others the hash of the
previous block and a fingerprint (Merkle root) of the transactions that
need to be added to the ledger.
• After that it appends a nonce to the input and it computes its hash. If

this hash is smaller than a predetermined value, then a new block has
been produced. Otherwise, it repeats the same procedure using a
different nonce.
• When a miner produces a block, new coins are minted and are given to

the miner as compensation for its work.

Criticism on Bitcoin and the
FruitChain proposal
• Bitcoin is vulnerable to selfish mining attacks:

• The fraction of the blocks in the ledger that belong to the honest miners is reduced.
• The attacker manages to replace the blocks of the honest miners with their own blocks.
• An adversary with network advantage and 1/3 of total hashing power can launch a

successful mining attack.
• Bitcoin has tendency to centralization:

• Miners are organized into mining pools.
• they solve computational puzzles of lower difficulty (partial PoW).
• they get paid regularly according to the pool rules.
• The leader of the pool may determine which transactions will be included in the next block.

• In a pool, the miners’ rewards have lower variance compared to solo mining.
• Currently, only three pools constitute the majority of the computational power.

Criticism on Bitcoin and the
FruitChain proposal
• Pass and Shi [PODC 2017] proposed FruitChain
• Utilizes 2-for-1 PoW (introduced in the Bitcoin Backbone Protocol

[EUROCRYPT 2015]).
• Provably satisfies fairness (honest miners hold a fraction of blocks that is very

close to their relative computational power).
• Mitigates selfish mining attacks.
• Reduces the variance as pools do (the miners get paid for solving puzzles of

lower difficulty) but in a “fully decentralized way”.

Common perception

The problem of centralization in
PoW blockchain systems can be solved via lower
rewards’ variance, so in FruitChain the formation

of pools is unnecessary

Common perception

The problem of centralization in
PoW blockchain systems can be solved via lower
rewards’ variance, so in FruitChain the formation

of pools is unnecessary

High variance is the main motivation for joining a pool

Mining pools are unnecessary, because miners
can produce fruits in short time

When the parties’ rewards are

concentrated with high probability

to their initial resources, the

parties lose their motivation to

form mining pools

Distribution of block rewards that is equitable

makes the formation of mining pools redundant

There is no mean of pool existence in Fruitchain

Our contributions

Contrary to the common perception, we prove that
lower variance of the rewards does not eliminate the

tendency of the PoW blockchain protocols to
centralization, as miners have also the incentive to

create large pools for sharing the cost of creating the
instance they need to solve the PoW puzzle.

Our contributions

We prove that there is a completely centralized
equilibrium where all the miners form a unique pool
whose pool leader is responsible for determining the

instance that will be used for the PoW procedure.

The notion of equilibrium that we use is Equilibrium
with Virtual Payoff (EVP)[AFT’21].

Our contributions

In order to be able to describe formally this equilibrium
we provide also a formal definition of a pool in a

blockchain system, as a subset of parties along with
their communication setting and their execution

guidelines.

We abstract the procedures of FruitChain as oracles and
assign to each of them a cost.

Outline of FruitChain

• Miners store transactions in data structures called fruits (instead of
blocks).
• Fruit mining has lower difficulty than block mining.
• 2-for-1 PoW: the miner computes hashes of a specific input, where the

prefix and the suffix of the hash determine whether a block or a fruit has
been mined, respectively.
• Fruits are stored in blocks and they need to be recent i.e., every fruit

points to a block not far from the latest block.

The core arguments in FruitChain security

• Selfish mining attacks are prevented because even if an attacker
withholds a block, the fruits of this block that are still recent can be
stored in a later block.
• Due to fruit recency, an attacker is not able to precompute an excessive

amount of fruits and reveal it later, thus disrupting the chain quality of
the protocol.

FruitChain parameters

• A random oracle 𝐻 ⋅ that responds to (block and fruit) mining queries.
• A collision resistant hash function (CRHF) 𝑑(⋅), utilized to

digest sets of fruits.
• A block mining hardness parameter 𝑝! .
• A fruit mining hardness parameter 𝑝" .
• A recency parameter 𝑟 that determines how far back can a fruit “hang”.

FRUITCHAIN in our framework

• The longest chain oracle
• Updates the longest valid chain.
• Outputs the new fruit and block pointers and a sequence of records.

• The fruit set oracle outputs and 𝑑().
• A transaction oracle outputs the record of all valid transactions.
• A new instance consists of

• The block pointer;
• The fruit pointer;
• A random nonce;

• ;
• The record of valid transactions.

• A random oracle responds to new instance queries.

𝑑 ()

𝑂#$

𝑂%&
𝑂"'

𝑂()

Diffuse

⋯

Diffuse

⋯

𝑂"' 𝑂%&𝑂#$

𝐻(⋅,⋅,⋅, 𝑑(),⋅)

Diffuse

𝐻(⋅,⋅,⋅, 𝑑(),⋅)

⋯

Diffuse

⋯

Diffuse

⋯

𝐻(⋅,⋅,⋅, 𝑑(),⋅)

Diffuse

⋯

A centralized pool for FruitChain

• During each round, the pool leader asks the longest chain oracle, fruit set oracle, and
transaction oracle, and creates the instance components (apart from the nonce) that
will be used for the queries to the random oracle.
• Then, it sends this instance to the pool members.
• The pool leader and the other members ask the random oracle 𝑞 queries when they

are activated, each time refreshing the nonce.
• When a fruit or a block is produced, it is sent to the Diffuse functionality (at most

one block per round).

𝑃! 𝑃" 𝑃#

𝑃$

…

D
iff

us
e

𝑂"' 𝑂%&𝑂#$

Payment rules and compliance checks

• If the cost that the pool leader incurred for creating the instances is higher than the
block's rewards, then the pool leader holds all the rewards.
• If the block's rewards are higher, then the pool leader subtracts the cost and shares

the remaining rewards equally among all the members of the pool including itself.
• The pool leader and other pool members check if the diffused fruits and blocks use

the instance sent by the pool leader (else, they abandon the pool).
• The pool members check if the payments have been computed correctly (else, they

abandon the pool). Formally, this check is abstracted via a query to a light transaction
verification oracle 𝑂#$% that adds a cost 𝐶#$% per round.

Some of the deviations that we examine in our
proof
• A coalition of members ignore the PoW instance provided by the pool leader and

compute their own instance (extend another chain and/or include different
transactions or fruits)
• A coalition of members (1) abandon the pool and (2) remain idle or set up their

own pool with different payment and compliance rules or mine on their own.
• A coalition of members ask fewer queries the relevant oracles.
• The leader dissolves the pool and mines on their own.
• The leader does not pay the members correctly by creating incorrect instance.
• The leader collaborates with some other members in order to not pay some other

members.
• The leader with/or some members do not send to the Diffuse function some of

their fruits or their block.

Equilibria with Virtual Payoff (EVPs) -
Kiayias and Stouka [AFT 2021]
• An environment schedules the protocol execution and provides

parties with their inputs.
• An adversary controls a coalition of up to 𝑡 parties.
• The rewards are virtual: each honest party can have a different view on

the utility of each other party and thus, the utility of the adversary.
• We compare the following utilities among all parties’ local views:
• The lowest utility when the coalition honestly follows the protocol.
• The highest utility where the adversary behaves arbitrarily.

Duringeachround,theenvironmentgivesinputstothe
partiesandactivatestheminaround-robinfashion(cf.[17]).
ThepartiesthatbelongtoHfollowtheprotocolandtheparties
thatbelongtoCfollowtheinstructionsoftheadversary.Note
thattheadversaryreflectsastrategiccoalitionthatdeviates
fromtheprotocolinawaythatmaximizesitscollectiveutility
(thesumoftheutilitiesofallthepartiesthatbelongtoH).

Thecommunicationbetweenthepartiesiscontrolledby
afunctionalitycalledDiffusefunctionalitydefinedin[17].
Thisfunctionalityguaranteesthateverymessagesentfrom
anhonestpartywillbedeliveredtoeveryotherhonestparty
bytheendofeachround.Itallowsthoughtheadversaryto
rearrangetheorderofthemessagesduringtheround.This
meansthattheadversaryisallowedtodeliveritsmessages
first.Theadversarythatfollowstheprotocolbutrearranges
themessagessothatitdeliversitsmessagesfirstisdenoted
byHC.Notethattheadversarymaysendsomeofitsmessages
toasubsetofthehonestparties,sothehonestpartiesatthe
endofaroundcanhavedifferentlocalview,thuslocalchain.

Duringtheexecution,thepartiesinteractwithanumber
oforaclesO1,...,Ow⇧thatareprotocol-specificfor⇧.For
instance,Ojcanbearandomoracle,asigningoracle,a
transactionvalidityoracle,etc.Thereisalimitednumberof
queriesthateachpartycanmaketoeachofO1,...,Ow⇧per
roundthatisdenotedbyq1,...,qw⇧,respectively.Inaddition,
weconsiderthateachsinglequerytoO1,...,Ow⇧hasanon-
zerocostdenotedbyC1,...,Cw⇧,respectively.

IfwefixtheenvironmentZandtheadversaryA,thenthe
executioncanbeseenasarandomvariabledenotedbyEZ,A.

C.Coalition-safeEquilibriawithVirtualPayoff

Thenotionofcoalition-safeequilibriawithvirtualpayoff

examinestheexecutionsEZ,AandEZ,HCforanarbitrary
environmentZandanarbitraryadversaryAthatcorruptsaset
Cincludingatmosttparties,wheretwillbeaparameterin
thisdefinition.InEZ,HC,theadversaryfollowstheprotocol
butrearrangesthemessagestodeliveritsmessagesfirst.In
EZ,Aitheadversarydeviatesarbitrarily.

Thenotioncomparestheutilityoftheadversaryinthese
twoexecutions.Bothexecutionshavethesamenumberrounds
(theenvironmentisadmissible)sothattheirutilitiescanbe
comparedinameaningfulway.Theutilityoftheadversary
willbethesumoftheutilitiesofthepartiesinC.Notethat
eachhonestpartycanhaveadifferentviewontheutility
ofeachotherpartyandthus,theutilityoftheadversary.
Thereasonisthattheutilityiscomputedbasedonthe
rewardswhich,inturn,arebasedontheparties’,potentially
different,localchains.Thenotionusesthelowestutilityof
theadversaryamongallthehonestparties’localviewsforthe
executionEZ,HC,denotedbyUmin

C(EZ,HC),andthehighest

utilityfortheexecutionEZ,A,denotedbyUmax
C(EZ,A).Note

thatUmin
C(EZ,HC)andUmax

C(EZ,A)arerandomvariablesover
thecoinsoftheadversary,theenvironment,thepartiesand
theoracles.

Definition1.Let✏,✏0benon-negativerealvalues.Aprotocol
⇧is(t,✏,✏0)-equilibriumwithvirtualpayoffs(EVP)when

foreveryN-admissibleenvironmentZandforeveryPPT
adversaryAthatcontrolsanarbitrarysetCofatmosttparties
itholdsthat

U
max
C(EZ,A)U

min
C(EZ,HC)+✏·|U

min
C(EZ,HC)|+✏0(1)

withoverwhelming(i.e.,1�negl())probability.

AccordingtoEq.(1),thecloserthatthevaluesof✏and
✏0getto0,the“tighter”theequilibriumis.Someexamples
ofutilityfunctionsoftheadversaryare:(i)absoluterewards,
(ii)absoluterewardsminusabsolutecost(profit)and(iii)
relativerewards.Notethatiftheadversarycandeviatefrom
theprotocolandincreasesignificantlyitsutilityontheview
ofjustonehonestpartywithanon-negligibleprobability,then
theprotocoldoesnotsatisfythisnotion.

Fortherestofthepaper,werefertotheframework
presentedinthissectionastheEVPframework.

III.THEFRUITCHAINPROTOCOL

Inthissection,wedeviseanadaptationoftheFruitChain
protocol[16]totheEVPframeworkof[30]outlinedin
SectionII.Inouradaptation,wetakeintoaccountthecost
ofarandomoraclequeryaswellasthecostsofdecidingona
newlocalstate,validatingretrievedmessages,andextracting
sequencesofrecordsoftransactions.Beforethepresentationof
ouradaptation,weprovideanoverviewoftheoriginalprotocol
description.

A.OverviewoftheFruitChainProtocol

IntheFruitChainprotocol[16],minersstoretransactionsin
fruitsinsteadofblocks.Inorderforaminertocreateafruit,it
needstoperformPoW,asitdoestoproduceblocks,yetfruit
mininghaslowerdifficulty.Inmoredetail,theminerperforms
a2-for-1PoWprocedureintroducedin[17].Inparticular,the
minercomputeshashesofaspecificinput,wheretheprefix
andthesuffixofthehashdeterminewhetherablockorafruit
hasbeenmined,respectively.Fruitsarestoredinblocksand
theyneedtoberecenti.e.,everyfruitpointstoablockthat
isnotfarfromthelatestblockoftheledger.

Atahighlevel,theFruitChainprotocolpreventsselfish
miningattacks[7]becauseevenifanattackerwithholdsa
block,thefruitsofthisblockthatarestillrecentcanbestored
inalaterblock.Therestrictionofrecencyexistssothatan
attackerisnotabletoprecomputeanexcessiveamountof
fruitsandrevealitlater,thusdisruptingthechainqualityof
theprotocol2.

B.ParameterizationandBasicConcepts

TheFruitChainPoWprotocolisparameterizedby:
1)ArandomoracleH(·)thatoutputsstringsoflength�2.

Theoraclerespondsto(blockandfruit)miningqueries.
2)Acollisionresistanthashfunction(CRHF)d(·),utilized

todigestsetsoffruits.

2Chainqualitywasintroducedin[17]andisrelatedtothefractionofthe
adversarialblocksinasufficientlylongsegmentoftheledger.

During each round, the environment gives inputs to the
parties and activates them in a round-robin fashion (cf. [17]).
The parties that belong to H follow the protocol and the parties
that belong to C follow the instructions of the adversary. Note
that the adversary reflects a strategic coalition that deviates
from the protocol in a way that maximizes its collective utility
(the sum of the utilities of all the parties that belong to H).

The communication between the parties is controlled by
a functionality called Diffuse functionality defined in [17].
This functionality guarantees that every message sent from
an honest party will be delivered to every other honest party
by the end of each round. It allows though the adversary to
rearrange the order of the messages during the round. This
means that the adversary is allowed to deliver its messages
first. The adversary that follows the protocol but rearranges
the messages so that it delivers its messages first is denoted
by HC. Note that the adversary may send some of its messages
to a subset of the honest parties, so the honest parties at the
end of a round can have different local view, thus local chain.

During the execution, the parties interact with a number
of oracles O1, . . . ,Ow⇧ that are protocol-specific for ⇧. For
instance, Oj can be a random oracle, a signing oracle, a
transaction validity oracle, etc. There is a limited number of
queries that each party can make to each of O1, . . . ,Ow⇧ per
round that is denoted by q1, . . . , qw⇧ , respectively. In addition,
we consider that each single query to O1, . . . ,Ow⇧ has a non-
zero cost denoted by C1, . . . , Cw⇧ , respectively.

If we fix the environment Z and the adversary A, then the
execution can be seen as a random variable denoted by EZ,A .

C. Coalition-safe Equilibria with Virtual Payoff

The notion of coalition-safe equilibria with virtual payoff

examines the executions EZ,A and EZ,HC for an arbitrary
environment Z and an arbitrary adversary A that corrupts a set
C including at most t parties, where t will be a parameter in
this definition. In EZ,HC , the adversary follows the protocol
but rearranges the messages to deliver its messages first. In
EZ,Ai the adversary deviates arbitrarily.

The notion compares the utility of the adversary in these
two executions. Both executions have the same number rounds
(the environment is admissible) so that their utilities can be
compared in a meaningful way. The utility of the adversary
will be the sum of the utilities of the parties in C. Note that
each honest party can have a different view on the utility
of each other party and thus, the utility of the adversary.
The reason is that the utility is computed based on the
rewards which, in turn, are based on the parties’, potentially
different, local chains. The notion uses the lowest utility of
the adversary among all the honest parties’ local views for the
execution EZ,HC , denoted by Umin

C (EZ,HC), and the highest

utility for the execution EZ,A , denoted by Umax
C (EZ,A). Note

that Umin
C (EZ,HC) and Umax

C (EZ,A) are random variables over
the coins of the adversary, the environment, the parties and
the oracles.

Definition 1. Let ✏, ✏0 be non-negative real values. A protocol
⇧ is (t, ✏, ✏0)-equilibrium with virtual payoffs (EVP) when

for every N -admissible environment Z and for every PPT
adversary A that controls an arbitrary set C of at most t parties
it holds that

Umax
C (EZ,A)  Umin

C (EZ,HC) + ✏· | Umin
C (EZ,HC) | +✏0 (1)

with overwhelming (i.e., 1� negl()) probability.

According to Eq. (1), the closer that the values of ✏ and
✏0 get to 0, the “tighter” the equilibrium is. Some examples
of utility functions of the adversary are: (i) absolute rewards,
(ii) absolute rewards minus absolute cost (profit) and (iii)
relative rewards. Note that if the adversary can deviate from
the protocol and increase significantly its utility on the view
of just one honest party with a non-negligible probability, then
the protocol does not satisfy this notion.

For the rest of the paper, we refer to the framework
presented in this section as the EVP framework.

III. THE FRUITCHAIN PROTOCOL

In this section, we devise an adaptation of the FruitChain
protocol [16] to the EVP framework of [30] outlined in
Section II. In our adaptation, we take into account the cost
of a random oracle query as well as the costs of deciding on a
new local state, validating retrieved messages, and extracting
sequences of records of transactions. Before the presentation of
our adaptation, we provide an overview of the original protocol
description.

A. Overview of the FruitChain Protocol

In the FruitChain protocol [16], miners store transactions in
fruits instead of blocks. In order for a miner to create a fruit, it
needs to perform PoW, as it does to produce blocks, yet fruit
mining has lower difficulty. In more detail, the miner performs
a 2-for-1 PoW procedure introduced in [17]. In particular, the
miner computes hashes of a specific input, where the prefix
and the suffix of the hash determine whether a block or a fruit
has been mined, respectively. Fruits are stored in blocks and
they need to be recent i.e., every fruit points to a block that
is not far from the latest block of the ledger.

At a high level, the FruitChain protocol prevents selfish
mining attacks [7] because even if an attacker withholds a
block, the fruits of this block that are still recent can be stored
in a later block. The restriction of recency exists so that an
attacker is not able to precompute an excessive amount of
fruits and reveal it later, thus disrupting the chain quality of
the protocol2.

B. Parameterization and Basic Concepts

The FruitChain PoW protocol is parameterized by:
1) A random oracle H(·) that outputs strings of length � 2.

The oracle responds to (block and fruit) mining queries.
2) A collision resistant hash function (CRHF) d(·), utilized

to digest sets of fruits.

2Chain quality was introduced in [17] and is related to the fraction of the
adversarial blocks in a sufficiently long segment of the ledger.

During each round, the environment gives inputs to the
parties and activates them in a round-robin fashion (cf. [17]).
The parties that belong to H follow the protocol and the parties
that belong to C follow the instructions of the adversary. Note
that the adversary reflects a strategic coalition that deviates
from the protocol in a way that maximizes its collective utility
(the sum of the utilities of all the parties that belong to H).

The communication between the parties is controlled by
a functionality called Diffuse functionality defined in [17].
This functionality guarantees that every message sent from
an honest party will be delivered to every other honest party
by the end of each round. It allows though the adversary to
rearrange the order of the messages during the round. This
means that the adversary is allowed to deliver its messages
first. The adversary that follows the protocol but rearranges
the messages so that it delivers its messages first is denoted
by HC. Note that the adversary may send some of its messages
to a subset of the honest parties, so the honest parties at the
end of a round can have different local view, thus local chain.

During the execution, the parties interact with a number
of oracles O1, . . . ,Ow⇧ that are protocol-specific for ⇧. For
instance, Oj can be a random oracle, a signing oracle, a
transaction validity oracle, etc. There is a limited number of
queries that each party can make to each of O1, . . . ,Ow⇧ per
round that is denoted by q1, . . . , qw⇧ , respectively. In addition,
we consider that each single query to O1, . . . ,Ow⇧ has a non-
zero cost denoted by C1, . . . , Cw⇧ , respectively.

If we fix the environment Z and the adversary A, then the
execution can be seen as a random variable denoted by EZ,A .

C. Coalition-safe Equilibria with Virtual Payoff

The notion of coalition-safe equilibria with virtual payoff

examines the executions EZ,A and EZ,HC for an arbitrary
environment Z and an arbitrary adversary A that corrupts a set
C including at most t parties, where t will be a parameter in
this definition. In EZ,HC , the adversary follows the protocol
but rearranges the messages to deliver its messages first. In
EZ,Ai the adversary deviates arbitrarily.

The notion compares the utility of the adversary in these
two executions. Both executions have the same number rounds
(the environment is admissible) so that their utilities can be
compared in a meaningful way. The utility of the adversary
will be the sum of the utilities of the parties in C. Note that
each honest party can have a different view on the utility
of each other party and thus, the utility of the adversary.
The reason is that the utility is computed based on the
rewards which, in turn, are based on the parties’, potentially
different, local chains. The notion uses the lowest utility of
the adversary among all the honest parties’ local views for the
execution EZ,HC , denoted by Umin

C (EZ,HC), and the highest

utility for the execution EZ,A , denoted by Umax
C (EZ,A). Note

that Umin
C (EZ,HC) and Umax

C (EZ,A) are random variables over
the coins of the adversary, the environment, the parties and
the oracles.

Definition 1. Let ✏, ✏0 be non-negative real values. A protocol
⇧ is (t, ✏, ✏0)-equilibrium with virtual payoffs (EVP) when

for every N -admissible environment Z and for every PPT
adversary A that controls an arbitrary set C of at most t parties
it holds that

Umax
C (EZ,A)  Umin

C (EZ,HC) + ✏· | Umin
C (EZ,HC) | +✏0 (1)

with overwhelming (i.e., 1� negl()) probability.

According to Eq. (1), the closer that the values of ✏ and
✏0 get to 0, the “tighter” the equilibrium is. Some examples
of utility functions of the adversary are: (i) absolute rewards,
(ii) absolute rewards minus absolute cost (profit) and (iii)
relative rewards. Note that if the adversary can deviate from
the protocol and increase significantly its utility on the view
of just one honest party with a non-negligible probability, then
the protocol does not satisfy this notion.

For the rest of the paper, we refer to the framework
presented in this section as the EVP framework.

III. THE FRUITCHAIN PROTOCOL

In this section, we devise an adaptation of the FruitChain
protocol [16] to the EVP framework of [30] outlined in
Section II. In our adaptation, we take into account the cost
of a random oracle query as well as the costs of deciding on a
new local state, validating retrieved messages, and extracting
sequences of records of transactions. Before the presentation of
our adaptation, we provide an overview of the original protocol
description.

A. Overview of the FruitChain Protocol

In the FruitChain protocol [16], miners store transactions in
fruits instead of blocks. In order for a miner to create a fruit, it
needs to perform PoW, as it does to produce blocks, yet fruit
mining has lower difficulty. In more detail, the miner performs
a 2-for-1 PoW procedure introduced in [17]. In particular, the
miner computes hashes of a specific input, where the prefix
and the suffix of the hash determine whether a block or a fruit
has been mined, respectively. Fruits are stored in blocks and
they need to be recent i.e., every fruit points to a block that
is not far from the latest block of the ledger.

At a high level, the FruitChain protocol prevents selfish
mining attacks [7] because even if an attacker withholds a
block, the fruits of this block that are still recent can be stored
in a later block. The restriction of recency exists so that an
attacker is not able to precompute an excessive amount of
fruits and reveal it later, thus disrupting the chain quality of
the protocol2.

B. Parameterization and Basic Concepts

The FruitChain PoW protocol is parameterized by:
1) A random oracle H(·) that outputs strings of length � 2.

The oracle responds to (block and fruit) mining queries.
2) A collision resistant hash function (CRHF) d(·), utilized

to digest sets of fruits.

2Chain quality was introduced in [17] and is related to the fraction of the
adversarial blocks in a sufficiently long segment of the ledger.

During each round, the environment gives inputs to the
parties and activates them in a round-robin fashion (cf. [17]).
The parties that belong to H follow the protocol and the parties
that belong to C follow the instructions of the adversary. Note
that the adversary reflects a strategic coalition that deviates
from the protocol in a way that maximizes its collective utility
(the sum of the utilities of all the parties that belong to H).

The communication between the parties is controlled by
a functionality called Diffuse functionality defined in [17].
This functionality guarantees that every message sent from
an honest party will be delivered to every other honest party
by the end of each round. It allows though the adversary to
rearrange the order of the messages during the round. This
means that the adversary is allowed to deliver its messages
first. The adversary that follows the protocol but rearranges
the messages so that it delivers its messages first is denoted
by HC. Note that the adversary may send some of its messages
to a subset of the honest parties, so the honest parties at the
end of a round can have different local view, thus local chain.

During the execution, the parties interact with a number
of oracles O1, . . . ,Ow⇧ that are protocol-specific for ⇧. For
instance, Oj can be a random oracle, a signing oracle, a
transaction validity oracle, etc. There is a limited number of
queries that each party can make to each of O1, . . . ,Ow⇧ per
round that is denoted by q1, . . . , qw⇧ , respectively. In addition,
we consider that each single query to O1, . . . ,Ow⇧ has a non-
zero cost denoted by C1, . . . , Cw⇧ , respectively.

If we fix the environment Z and the adversary A, then the
execution can be seen as a random variable denoted by EZ,A .

C. Coalition-safe Equilibria with Virtual Payoff

The notion of coalition-safe equilibria with virtual payoff

examines the executions EZ,A and EZ,HC for an arbitrary
environment Z and an arbitrary adversary A that corrupts a set
C including at most t parties, where t will be a parameter in
this definition. In EZ,HC , the adversary follows the protocol
but rearranges the messages to deliver its messages first. In
EZ,Ai the adversary deviates arbitrarily.

The notion compares the utility of the adversary in these
two executions. Both executions have the same number rounds
(the environment is admissible) so that their utilities can be
compared in a meaningful way. The utility of the adversary
will be the sum of the utilities of the parties in C. Note that
each honest party can have a different view on the utility
of each other party and thus, the utility of the adversary.
The reason is that the utility is computed based on the
rewards which, in turn, are based on the parties’, potentially
different, local chains. The notion uses the lowest utility of
the adversary among all the honest parties’ local views for the
execution EZ,HC , denoted by Umin

C (EZ,HC), and the highest

utility for the execution EZ,A , denoted by Umax
C (EZ,A). Note

that Umin
C (EZ,HC) and Umax

C (EZ,A) are random variables over
the coins of the adversary, the environment, the parties and
the oracles.

Definition 1. Let ✏, ✏0 be non-negative real values. A protocol
⇧ is (t, ✏, ✏0)-equilibrium with virtual payoffs (EVP) when

for every N -admissible environment Z and for every PPT
adversary A that controls an arbitrary set C of at most t parties
it holds that

Umax
C (EZ,A)  Umin

C (EZ,HC) + ✏· | Umin
C (EZ,HC) | +✏0 (1)

with overwhelming (i.e., 1� negl()) probability.

According to Eq. (1), the closer that the values of ✏ and
✏0 get to 0, the “tighter” the equilibrium is. Some examples
of utility functions of the adversary are: (i) absolute rewards,
(ii) absolute rewards minus absolute cost (profit) and (iii)
relative rewards. Note that if the adversary can deviate from
the protocol and increase significantly its utility on the view
of just one honest party with a non-negligible probability, then
the protocol does not satisfy this notion.

For the rest of the paper, we refer to the framework
presented in this section as the EVP framework.

III. THE FRUITCHAIN PROTOCOL

In this section, we devise an adaptation of the FruitChain
protocol [16] to the EVP framework of [30] outlined in
Section II. In our adaptation, we take into account the cost
of a random oracle query as well as the costs of deciding on a
new local state, validating retrieved messages, and extracting
sequences of records of transactions. Before the presentation of
our adaptation, we provide an overview of the original protocol
description.

A. Overview of the FruitChain Protocol

In the FruitChain protocol [16], miners store transactions in
fruits instead of blocks. In order for a miner to create a fruit, it
needs to perform PoW, as it does to produce blocks, yet fruit
mining has lower difficulty. In more detail, the miner performs
a 2-for-1 PoW procedure introduced in [17]. In particular, the
miner computes hashes of a specific input, where the prefix
and the suffix of the hash determine whether a block or a fruit
has been mined, respectively. Fruits are stored in blocks and
they need to be recent i.e., every fruit points to a block that
is not far from the latest block of the ledger.

At a high level, the FruitChain protocol prevents selfish
mining attacks [7] because even if an attacker withholds a
block, the fruits of this block that are still recent can be stored
in a later block. The restriction of recency exists so that an
attacker is not able to precompute an excessive amount of
fruits and reveal it later, thus disrupting the chain quality of
the protocol2.

B. Parameterization and Basic Concepts

The FruitChain PoW protocol is parameterized by:
1) A random oracle H(·) that outputs strings of length � 2.

The oracle responds to (block and fruit) mining queries.
2) A collision resistant hash function (CRHF) d(·), utilized

to digest sets of fruits.

2Chain quality was introduced in [17] and is related to the fraction of the
adversarial blocks in a sufficiently long segment of the ledger.

Equilibria with Virtual Payoff (EVPs) –
Kiayias and Stouka [AFT 2021]

Let 𝜖, 𝜖&be non-negative real values and 𝜅 be the security
parameter. A protocol Π is a 𝑡, 𝜖, 𝜖& -EVP if for every PPT

adversary that controls a set C of at most 𝑡 parties, it holds that

with 1-negl(𝜅) probability.

During each round, the environment gives inputs to the
parties and activates them in a round-robin fashion (cf. [17]).
The parties that belong to H follow the protocol and the parties
that belong to C follow the instructions of the adversary. Note
that the adversary reflects a strategic coalition that deviates
from the protocol in a way that maximizes its collective utility
(the sum of the utilities of all the parties that belong to H).

The communication between the parties is controlled by
a functionality called Diffuse functionality defined in [17].
This functionality guarantees that every message sent from
an honest party will be delivered to every other honest party
by the end of each round. It allows though the adversary to
rearrange the order of the messages during the round. This
means that the adversary is allowed to deliver its messages
first. The adversary that follows the protocol but rearranges
the messages so that it delivers its messages first is denoted
by HC. Note that the adversary may send some of its messages
to a subset of the honest parties, so the honest parties at the
end of a round can have different local view, thus local chain.

During the execution, the parties interact with a number
of oracles O1, . . . ,Ow⇧ that are protocol-specific for ⇧. For
instance, Oj can be a random oracle, a signing oracle, a
transaction validity oracle, etc. There is a limited number of
queries that each party can make to each of O1, . . . ,Ow⇧ per
round that is denoted by q1, . . . , qw⇧ , respectively. In addition,
we consider that each single query to O1, . . . ,Ow⇧ has a non-
zero cost denoted by C1, . . . , Cw⇧ , respectively.

If we fix the environment Z and the adversary A, then the
execution can be seen as a random variable denoted by EZ,A .

C. Coalition-safe Equilibria with Virtual Payoff

The notion of coalition-safe equilibria with virtual payoff

examines the executions EZ,A and EZ,HC for an arbitrary
environment Z and an arbitrary adversary A that corrupts a set
C including at most t parties, where t will be a parameter in
this definition. In EZ,HC , the adversary follows the protocol
but rearranges the messages to deliver its messages first. In
EZ,Ai the adversary deviates arbitrarily.

The notion compares the utility of the adversary in these
two executions. Both executions have the same number rounds
(the environment is admissible) so that their utilities can be
compared in a meaningful way. The utility of the adversary
will be the sum of the utilities of the parties in C. Note that
each honest party can have a different view on the utility
of each other party and thus, the utility of the adversary.
The reason is that the utility is computed based on the
rewards which, in turn, are based on the parties’, potentially
different, local chains. The notion uses the lowest utility of
the adversary among all the honest parties’ local views for the
execution EZ,HC , denoted by Umin

C (EZ,HC), and the highest

utility for the execution EZ,A , denoted by Umax
C (EZ,A). Note

that Umin
C (EZ,HC) and Umax

C (EZ,A) are random variables over
the coins of the adversary, the environment, the parties and
the oracles.

Definition 1. Let ✏, ✏0 be non-negative real values. A protocol
⇧ is (t, ✏, ✏0)-equilibrium with virtual payoffs (EVP) when

for every N -admissible environment Z and for every PPT
adversary A that controls an arbitrary set C of at most t parties
it holds that

Umax
C (EZ,A)  Umin

C (EZ,HC) + ✏· | Umin
C (EZ,HC) | +✏0 (1)

with overwhelming (i.e., 1� negl()) probability.

According to Eq. (1), the closer that the values of ✏ and
✏0 get to 0, the “tighter” the equilibrium is. Some examples
of utility functions of the adversary are: (i) absolute rewards,
(ii) absolute rewards minus absolute cost (profit) and (iii)
relative rewards. Note that if the adversary can deviate from
the protocol and increase significantly its utility on the view
of just one honest party with a non-negligible probability, then
the protocol does not satisfy this notion.

For the rest of the paper, we refer to the framework
presented in this section as the EVP framework.

III. THE FRUITCHAIN PROTOCOL

In this section, we devise an adaptation of the FruitChain
protocol [16] to the EVP framework of [30] outlined in
Section II. In our adaptation, we take into account the cost
of a random oracle query as well as the costs of deciding on a
new local state, validating retrieved messages, and extracting
sequences of records of transactions. Before the presentation of
our adaptation, we provide an overview of the original protocol
description.

A. Overview of the FruitChain Protocol

In the FruitChain protocol [16], miners store transactions in
fruits instead of blocks. In order for a miner to create a fruit, it
needs to perform PoW, as it does to produce blocks, yet fruit
mining has lower difficulty. In more detail, the miner performs
a 2-for-1 PoW procedure introduced in [17]. In particular, the
miner computes hashes of a specific input, where the prefix
and the suffix of the hash determine whether a block or a fruit
has been mined, respectively. Fruits are stored in blocks and
they need to be recent i.e., every fruit points to a block that
is not far from the latest block of the ledger.

At a high level, the FruitChain protocol prevents selfish
mining attacks [7] because even if an attacker withholds a
block, the fruits of this block that are still recent can be stored
in a later block. The restriction of recency exists so that an
attacker is not able to precompute an excessive amount of
fruits and reveal it later, thus disrupting the chain quality of
the protocol2.

B. Parameterization and Basic Concepts

The FruitChain PoW protocol is parameterized by:
1) A random oracle H(·) that outputs strings of length � 2.

The oracle responds to (block and fruit) mining queries.
2) A collision resistant hash function (CRHF) d(·), utilized

to digest sets of fruits.

2Chain quality was introduced in [17] and is related to the fraction of the
adversarial blocks in a sufficiently long segment of the ledger.

The centralized pool as an EVP

Let 𝑁 be the number of rounds and 𝑛 be the number of parties. Let 𝑅! be the rewards per
fruit, 𝐶"# be the cost of a query to the longest chain oracle, 𝐶"$% be the cost of a query to the

light transaction verification oracle, and 𝑞 be the number of RO queries (per party per round).
Assume that the block mining hardness parameter is 𝑝& = Ω('

()
) and the fruit mining

hardness parameter is 𝑝! <
'
*

. Then, the FruitChain centralized pool is a 𝑛 − 1, 0, 𝜖+ -EVP,
where 𝜖′ is dominated by the following three additive approximation factors:

1. 𝑂 𝑁 ⋅ 𝑛
!
" ⋅ log𝜅 ⋅ 𝑝! ⋅ 𝑅!

2. 𝑂 𝑁
#
$ ⋅ log𝜅 ⋅ 𝐶"#

3. 𝑂 𝑁 ⋅ 𝑛 ⋅ log𝜅 ⋅ 𝐶"$%

The centralized pool as an EVP

• Dominant additive approximation factors

• 𝑂 𝑁 ⋅ 𝑛
!
" ⋅ log𝜅 ⋅ 𝑝' ⋅ 𝑅' : appears because the EVP notion compares the

exact profit of the honest and adversarial strategy with overwhelming probability.

• 𝑂 𝑁
#
$ ⋅ log𝜅 ⋅ 𝐶#(: is due to the same reason as above.

• 𝑂 𝑁 ⋅ 𝑛 ⋅ log𝜅 ⋅ 𝐶#$% : the honest parties check the validity of the payments
(typically, this cost is small).

Discussion and key takeaways

• Our results indicate that, apart from reducing the variance of the rewards,
further research is needed to incentivize decentralization in PoW protocols.
• Other proposals (e.g., Smartpool [USENIX 2017], StrongChain [USENIX

2019]) where miners validate the transactions, have similar tendency to
centralization (i.e., collusion to share verification costs).
• Candidate mitigation strategy: construct PoW puzzles that disincentivize the

formation of pools, while being applicable to blockchain protocols that satisfy
fairness (like FruitChain)
• Promising starting point: GSCS [Wang et al., IEEE Access 2020] deploys a non-

parallelizable PoW puzzle used in a consensus mechanism that guarantees fairness.

On the
(De)centralization
of FruitChains

Aikaterini-Panagiota Stouka, Nethermind

Thomas Zacharias, University of Glasgow

