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Bitcoin and PoW blockchain protocols 

• Bitcoin and in general blockchain utilizes a distributed ledger of  
transactions that is extended and maintained in a decentralized manner 
without the need of  a trusted party.
• Transactions are stored in blocks maintained by nodes in a peer–to-peer 

network.
• Blocks form a chain; every block has a reference to the previous block.
• If  more than one candidate chains have been created, the longest chain 

will constitute the ledger.
• A new block is added to the ledger when a node, called miner, solves a 

Proof  of  Work Puzzle that demands computational power. 



Bitcoin and PoW blockchain protocols 

• The miner creates an input that includes among others the hash of  the 
previous block and a fingerprint (Merkle root) of  the transactions that 
need to be added to the ledger. 
• After that it appends a nonce to the input and it computes its hash. If  

this hash is smaller than a predetermined value, then a new block has 
been produced.  Otherwise, it repeats the same procedure using a 
different nonce.
• When a miner produces a block, new coins are minted and are given to 

the miner as compensation for its work. 



Criticism on Bitcoin and the
FruitChain proposal 
• Bitcoin is vulnerable to selfish mining attacks:

• The fraction of  the blocks in the ledger that belong to the honest miners is reduced.
• The attacker manages to replace the blocks of  the honest miners with their own blocks.
• An adversary with network advantage and 1/3 of  total hashing power can launch a 

successful mining attack. 
• Bitcoin has tendency to centralization:

• Miners are organized into mining pools. 
• they solve computational puzzles of  lower difficulty (partial PoW).
• they get paid regularly according to the pool rules.
• The leader of  the pool may determine which transactions will be included in the next block.

• In a pool, the miners’ rewards have lower variance compared to solo mining.
• Currently, only three pools constitute the majority of  the computational power.



Criticism on Bitcoin and the
FruitChain proposal 
• Pass and Shi [PODC 2017] proposed FruitChain 
• Utilizes 2-for-1 PoW (introduced in the Bitcoin Backbone Protocol 

[EUROCRYPT 2015]).
• Provably satisfies fairness (honest miners hold a fraction of  blocks that is very 

close to their relative computational power).
• Mitigates selfish mining attacks.
• Reduces the variance as pools do (the miners get paid for solving puzzles of  

lower difficulty) but in a “fully decentralized way”. 



Common perception

The problem of  centralization in 
PoW blockchain systems can be solved via lower 
rewards’ variance, so in FruitChain the formation 

of  pools is unnecessary



Common perception

The problem of  centralization in 
PoW blockchain systems can be solved via lower 
rewards’ variance, so in FruitChain the formation 

of  pools is unnecessary

High variance is the main motivation for joining a pool

Mining pools are unnecessary, because miners 
can produce fruits in short time

When the parties’ rewards are 

concentrated with high probability 

to their initial resources, the 

parties lose their motivation to 

form mining pools

Distribution of block rewards that is equitable 

makes the formation of mining pools redundant

There is no mean of pool existence in Fruitchain



Our contributions

Contrary to the common perception, we prove that 
lower variance of  the rewards does not eliminate the 

tendency of  the PoW blockchain protocols to 
centralization, as miners have also the incentive to 

create large pools for sharing the cost of  creating the 
instance they need to solve the PoW puzzle.



Our contributions

We prove that there is a completely centralized 
equilibrium where all the miners form a unique pool 
whose pool leader is responsible for determining the 

instance that will be used for the PoW procedure. 

The notion of  equilibrium that we use is Equilibrium 
with Virtual Payoff  (EVP)[AFT’21]. 



Our contributions

In order to be able to describe formally this equilibrium 
we provide also a formal definition of  a pool in a 

blockchain system, as a subset of  parties along with 
their communication setting and their execution 

guidelines.

We abstract the procedures of  FruitChain as oracles and 
assign to each of  them a cost. 



Outline of  FruitChain

• Miners store transactions in data structures called fruits (instead of  
blocks). 
• Fruit mining has lower difficulty than block mining.
• 2-for-1 PoW: the miner computes hashes of  a specific input, where the 

prefix and the suffix of  the hash determine whether a block or a fruit has 
been mined, respectively.
• Fruits are stored in blocks and they need to be recent i.e., every fruit 

points to a block not far from the latest block.



The core arguments in FruitChain security

• Selfish mining attacks are prevented because even if  an attacker 
withholds a block, the fruits of  this block that are still recent can be 
stored in a later block.
• Due to fruit recency, an attacker is not able to precompute an excessive 

amount of  fruits and reveal it later, thus disrupting the chain quality of  
the protocol.



FruitChain parameters

• A random oracle 𝐻 ⋅  that responds to (block and fruit) mining queries.
• A collision resistant hash function (CRHF) 𝑑(⋅), utilized to

digest sets of  fruits. 
• A block mining hardness parameter 𝑝! . 
• A fruit mining hardness parameter 𝑝" . 
• A recency parameter 𝑟 that determines how far back can a fruit “hang”.



FRUITCHAIN in our framework

• The longest chain oracle
• Updates the longest valid chain.
• Outputs the new fruit and block pointers and a sequence of  records.

• The fruit set oracle outputs         and  𝑑( ). 
• A transaction oracle  outputs the record of  all valid transactions.
• A new instance consists of

• The block pointer;
• The fruit pointer;
• A random nonce;

• ;
• The record of  valid transactions.

• A random oracle          responds to new instance queries. 
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A centralized pool for FruitChain

• During each round, the pool leader asks the longest chain oracle, fruit set oracle, and 
transaction oracle, and creates the instance components (apart from the nonce) that 
will be used for the queries to the random oracle. 
• Then, it sends this instance to the pool members.
• The pool leader and the other members ask the random oracle 𝑞 queries when they 

are activated, each time refreshing the nonce. 
• When a fruit or a block is produced, it is sent to the Diffuse functionality (at most 

one block per round).
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Payment rules and compliance checks 

• If  the cost that the pool leader incurred for creating the instances is higher than the 
block's rewards, then the pool leader holds all the rewards.
• If  the block's rewards are higher, then the pool leader subtracts the cost and shares 

the remaining rewards equally among all the members of  the pool including itself.
• The pool leader and other pool members check if  the diffused fruits and blocks use 

the instance sent by the pool leader (else, they abandon the pool).
• The pool members check if  the payments have been computed correctly (else, they 

abandon the pool). Formally, this check is abstracted via a query to a light transaction 
verification oracle 𝑂#$% that adds a cost 𝐶#$% per round.



Some of  the deviations that we examine in our 
proof
• A coalition of  members ignore the PoW instance provided by the pool leader and 

compute their own instance (extend another chain and/or include different 
transactions or fruits)
• A coalition of  members  (1) abandon the pool and (2) remain idle or set up their 

own pool with different payment and compliance rules or mine on their own.
• A coalition of  members ask fewer queries the relevant oracles.
• The leader dissolves the pool and mines on their own.
• The leader does not pay the members correctly by creating incorrect instance.
• The leader collaborates with some other members in order to not pay some other 

members.
• The leader with/or some members do not send to the Diffuse function some of  

their fruits or their block.



Equilibria with Virtual Payoff  (EVPs) -
Kiayias and Stouka [AFT 2021]
• An environment      schedules the protocol execution and provides 

parties with their inputs.
• An adversary      controls a coalition of  up to 𝑡 parties.
• The rewards are virtual:  each honest party can have a different view on 

the utility of  each other party and thus, the utility of  the adversary.
• We compare the following utilities among all parties’ local views:
• The lowest utility                     when the coalition honestly follows the protocol.
• The highest utility                     where the adversary behaves arbitrarily.       

Duringeachround,theenvironmentgivesinputstothe
partiesandactivatestheminaround-robinfashion(cf.[17]).
ThepartiesthatbelongtoHfollowtheprotocolandtheparties
thatbelongtoCfollowtheinstructionsoftheadversary.Note
thattheadversaryreflectsastrategiccoalitionthatdeviates
fromtheprotocolinawaythatmaximizesitscollectiveutility
(thesumoftheutilitiesofallthepartiesthatbelongtoH).

Thecommunicationbetweenthepartiesiscontrolledby
afunctionalitycalledDiffusefunctionalitydefinedin[17].
Thisfunctionalityguaranteesthateverymessagesentfrom
anhonestpartywillbedeliveredtoeveryotherhonestparty
bytheendofeachround.Itallowsthoughtheadversaryto
rearrangetheorderofthemessagesduringtheround.This
meansthattheadversaryisallowedtodeliveritsmessages
first.Theadversarythatfollowstheprotocolbutrearranges
themessagessothatitdeliversitsmessagesfirstisdenoted
byHC.Notethattheadversarymaysendsomeofitsmessages
toasubsetofthehonestparties,sothehonestpartiesatthe
endofaroundcanhavedifferentlocalview,thuslocalchain.

Duringtheexecution,thepartiesinteractwithanumber
oforaclesO1,...,Ow⇧thatareprotocol-specificfor⇧.For
instance,Ojcanbearandomoracle,asigningoracle,a
transactionvalidityoracle,etc.Thereisalimitednumberof
queriesthateachpartycanmaketoeachofO1,...,Ow⇧per
roundthatisdenotedbyq1,...,qw⇧,respectively.Inaddition,
weconsiderthateachsinglequerytoO1,...,Ow⇧hasanon-
zerocostdenotedbyC1,...,Cw⇧,respectively.

IfwefixtheenvironmentZandtheadversaryA,thenthe
executioncanbeseenasarandomvariabledenotedbyEZ,A.

C.Coalition-safeEquilibriawithVirtualPayoff

Thenotionofcoalition-safeequilibriawithvirtualpayoff

examinestheexecutionsEZ,AandEZ,HCforanarbitrary
environmentZandanarbitraryadversaryAthatcorruptsaset
Cincludingatmosttparties,wheretwillbeaparameterin
thisdefinition.InEZ,HC,theadversaryfollowstheprotocol
butrearrangesthemessagestodeliveritsmessagesfirst.In
EZ,Aitheadversarydeviatesarbitrarily.

Thenotioncomparestheutilityoftheadversaryinthese
twoexecutions.Bothexecutionshavethesamenumberrounds
(theenvironmentisadmissible)sothattheirutilitiescanbe
comparedinameaningfulway.Theutilityoftheadversary
willbethesumoftheutilitiesofthepartiesinC.Notethat
eachhonestpartycanhaveadifferentviewontheutility
ofeachotherpartyandthus,theutilityoftheadversary.
Thereasonisthattheutilityiscomputedbasedonthe
rewardswhich,inturn,arebasedontheparties’,potentially
different,localchains.Thenotionusesthelowestutilityof
theadversaryamongallthehonestparties’localviewsforthe
executionEZ,HC,denotedbyUmin

C(EZ,HC),andthehighest

utilityfortheexecutionEZ,A,denotedbyUmax
C(EZ,A).Note

thatUmin
C(EZ,HC)andUmax

C(EZ,A)arerandomvariablesover
thecoinsoftheadversary,theenvironment,thepartiesand
theoracles.

Definition1.Let✏,✏0benon-negativerealvalues.Aprotocol
⇧is(t,✏,✏0)-equilibriumwithvirtualpayoffs(EVP)when

foreveryN-admissibleenvironmentZandforeveryPPT
adversaryAthatcontrolsanarbitrarysetCofatmosttparties
itholdsthat

U
max
C(EZ,A)U

min
C(EZ,HC)+✏·|U

min
C(EZ,HC)|+✏0(1)

withoverwhelming(i.e.,1�negl())probability.

AccordingtoEq.(1),thecloserthatthevaluesof✏and
✏0getto0,the“tighter”theequilibriumis.Someexamples
ofutilityfunctionsoftheadversaryare:(i)absoluterewards,
(ii)absoluterewardsminusabsolutecost(profit)and(iii)
relativerewards.Notethatiftheadversarycandeviatefrom
theprotocolandincreasesignificantlyitsutilityontheview
ofjustonehonestpartywithanon-negligibleprobability,then
theprotocoldoesnotsatisfythisnotion.

Fortherestofthepaper,werefertotheframework
presentedinthissectionastheEVPframework.

III.THEFRUITCHAINPROTOCOL

Inthissection,wedeviseanadaptationoftheFruitChain
protocol[16]totheEVPframeworkof[30]outlinedin
SectionII.Inouradaptation,wetakeintoaccountthecost
ofarandomoraclequeryaswellasthecostsofdecidingona
newlocalstate,validatingretrievedmessages,andextracting
sequencesofrecordsoftransactions.Beforethepresentationof
ouradaptation,weprovideanoverviewoftheoriginalprotocol
description.

A.OverviewoftheFruitChainProtocol

IntheFruitChainprotocol[16],minersstoretransactionsin
fruitsinsteadofblocks.Inorderforaminertocreateafruit,it
needstoperformPoW,asitdoestoproduceblocks,yetfruit
mininghaslowerdifficulty.Inmoredetail,theminerperforms
a2-for-1PoWprocedureintroducedin[17].Inparticular,the
minercomputeshashesofaspecificinput,wheretheprefix
andthesuffixofthehashdeterminewhetherablockorafruit
hasbeenmined,respectively.Fruitsarestoredinblocksand
theyneedtoberecenti.e.,everyfruitpointstoablockthat
isnotfarfromthelatestblockoftheledger.

Atahighlevel,theFruitChainprotocolpreventsselfish
miningattacks[7]becauseevenifanattackerwithholdsa
block,thefruitsofthisblockthatarestillrecentcanbestored
inalaterblock.Therestrictionofrecencyexistssothatan
attackerisnotabletoprecomputeanexcessiveamountof
fruitsandrevealitlater,thusdisruptingthechainqualityof
theprotocol2.

B.ParameterizationandBasicConcepts

TheFruitChainPoWprotocolisparameterizedby:
1)ArandomoracleH(·)thatoutputsstringsoflength�2.

Theoraclerespondsto(blockandfruit)miningqueries.
2)Acollisionresistanthashfunction(CRHF)d(·),utilized

todigestsetsoffruits.

2Chainqualitywasintroducedin[17]andisrelatedtothefractionofthe
adversarialblocksinasufficientlylongsegmentoftheledger.

During each round, the environment gives inputs to the
parties and activates them in a round-robin fashion (cf. [17]).
The parties that belong to H follow the protocol and the parties
that belong to C follow the instructions of the adversary. Note
that the adversary reflects a strategic coalition that deviates
from the protocol in a way that maximizes its collective utility
(the sum of the utilities of all the parties that belong to H).

The communication between the parties is controlled by
a functionality called Diffuse functionality defined in [17].
This functionality guarantees that every message sent from
an honest party will be delivered to every other honest party
by the end of each round. It allows though the adversary to
rearrange the order of the messages during the round. This
means that the adversary is allowed to deliver its messages
first. The adversary that follows the protocol but rearranges
the messages so that it delivers its messages first is denoted
by HC. Note that the adversary may send some of its messages
to a subset of the honest parties, so the honest parties at the
end of a round can have different local view, thus local chain.

During the execution, the parties interact with a number
of oracles O1, . . . ,Ow⇧ that are protocol-specific for ⇧. For
instance, Oj can be a random oracle, a signing oracle, a
transaction validity oracle, etc. There is a limited number of
queries that each party can make to each of O1, . . . ,Ow⇧ per
round that is denoted by q1, . . . , qw⇧ , respectively. In addition,
we consider that each single query to O1, . . . ,Ow⇧ has a non-
zero cost denoted by C1, . . . , Cw⇧ , respectively.

If we fix the environment Z and the adversary A, then the
execution can be seen as a random variable denoted by EZ,A .

C. Coalition-safe Equilibria with Virtual Payoff

The notion of coalition-safe equilibria with virtual payoff

examines the executions EZ,A and EZ,HC for an arbitrary
environment Z and an arbitrary adversary A that corrupts a set
C including at most t parties, where t will be a parameter in
this definition. In EZ,HC , the adversary follows the protocol
but rearranges the messages to deliver its messages first. In
EZ,Ai the adversary deviates arbitrarily.

The notion compares the utility of the adversary in these
two executions. Both executions have the same number rounds
(the environment is admissible) so that their utilities can be
compared in a meaningful way. The utility of the adversary
will be the sum of the utilities of the parties in C. Note that
each honest party can have a different view on the utility
of each other party and thus, the utility of the adversary.
The reason is that the utility is computed based on the
rewards which, in turn, are based on the parties’, potentially
different, local chains. The notion uses the lowest utility of
the adversary among all the honest parties’ local views for the
execution EZ,HC , denoted by Umin

C (EZ,HC), and the highest

utility for the execution EZ,A , denoted by Umax
C (EZ,A). Note

that Umin
C (EZ,HC) and Umax

C (EZ,A) are random variables over
the coins of the adversary, the environment, the parties and
the oracles.

Definition 1. Let ✏, ✏0 be non-negative real values. A protocol
⇧ is (t, ✏, ✏0)-equilibrium with virtual payoffs (EVP) when

for every N -admissible environment Z and for every PPT
adversary A that controls an arbitrary set C of at most t parties
it holds that

Umax
C (EZ,A)  Umin

C (EZ,HC) + ✏· | Umin
C (EZ,HC) | +✏0 (1)

with overwhelming (i.e., 1� negl()) probability.

According to Eq. (1), the closer that the values of ✏ and
✏0 get to 0, the “tighter” the equilibrium is. Some examples
of utility functions of the adversary are: (i) absolute rewards,
(ii) absolute rewards minus absolute cost (profit) and (iii)
relative rewards. Note that if the adversary can deviate from
the protocol and increase significantly its utility on the view
of just one honest party with a non-negligible probability, then
the protocol does not satisfy this notion.

For the rest of the paper, we refer to the framework
presented in this section as the EVP framework.

III. THE FRUITCHAIN PROTOCOL

In this section, we devise an adaptation of the FruitChain
protocol [16] to the EVP framework of [30] outlined in
Section II. In our adaptation, we take into account the cost
of a random oracle query as well as the costs of deciding on a
new local state, validating retrieved messages, and extracting
sequences of records of transactions. Before the presentation of
our adaptation, we provide an overview of the original protocol
description.

A. Overview of the FruitChain Protocol

In the FruitChain protocol [16], miners store transactions in
fruits instead of blocks. In order for a miner to create a fruit, it
needs to perform PoW, as it does to produce blocks, yet fruit
mining has lower difficulty. In more detail, the miner performs
a 2-for-1 PoW procedure introduced in [17]. In particular, the
miner computes hashes of a specific input, where the prefix
and the suffix of the hash determine whether a block or a fruit
has been mined, respectively. Fruits are stored in blocks and
they need to be recent i.e., every fruit points to a block that
is not far from the latest block of the ledger.

At a high level, the FruitChain protocol prevents selfish
mining attacks [7] because even if an attacker withholds a
block, the fruits of this block that are still recent can be stored
in a later block. The restriction of recency exists so that an
attacker is not able to precompute an excessive amount of
fruits and reveal it later, thus disrupting the chain quality of
the protocol2.

B. Parameterization and Basic Concepts

The FruitChain PoW protocol is parameterized by:
1) A random oracle H(·) that outputs strings of length � 2.

The oracle responds to (block and fruit) mining queries.
2) A collision resistant hash function (CRHF) d(·), utilized

to digest sets of fruits.

2Chain quality was introduced in [17] and is related to the fraction of the
adversarial blocks in a sufficiently long segment of the ledger.

During each round, the environment gives inputs to the
parties and activates them in a round-robin fashion (cf. [17]).
The parties that belong to H follow the protocol and the parties
that belong to C follow the instructions of the adversary. Note
that the adversary reflects a strategic coalition that deviates
from the protocol in a way that maximizes its collective utility
(the sum of the utilities of all the parties that belong to H).

The communication between the parties is controlled by
a functionality called Diffuse functionality defined in [17].
This functionality guarantees that every message sent from
an honest party will be delivered to every other honest party
by the end of each round. It allows though the adversary to
rearrange the order of the messages during the round. This
means that the adversary is allowed to deliver its messages
first. The adversary that follows the protocol but rearranges
the messages so that it delivers its messages first is denoted
by HC. Note that the adversary may send some of its messages
to a subset of the honest parties, so the honest parties at the
end of a round can have different local view, thus local chain.

During the execution, the parties interact with a number
of oracles O1, . . . ,Ow⇧ that are protocol-specific for ⇧. For
instance, Oj can be a random oracle, a signing oracle, a
transaction validity oracle, etc. There is a limited number of
queries that each party can make to each of O1, . . . ,Ow⇧ per
round that is denoted by q1, . . . , qw⇧ , respectively. In addition,
we consider that each single query to O1, . . . ,Ow⇧ has a non-
zero cost denoted by C1, . . . , Cw⇧ , respectively.

If we fix the environment Z and the adversary A, then the
execution can be seen as a random variable denoted by EZ,A .

C. Coalition-safe Equilibria with Virtual Payoff

The notion of coalition-safe equilibria with virtual payoff

examines the executions EZ,A and EZ,HC for an arbitrary
environment Z and an arbitrary adversary A that corrupts a set
C including at most t parties, where t will be a parameter in
this definition. In EZ,HC , the adversary follows the protocol
but rearranges the messages to deliver its messages first. In
EZ,Ai the adversary deviates arbitrarily.

The notion compares the utility of the adversary in these
two executions. Both executions have the same number rounds
(the environment is admissible) so that their utilities can be
compared in a meaningful way. The utility of the adversary
will be the sum of the utilities of the parties in C. Note that
each honest party can have a different view on the utility
of each other party and thus, the utility of the adversary.
The reason is that the utility is computed based on the
rewards which, in turn, are based on the parties’, potentially
different, local chains. The notion uses the lowest utility of
the adversary among all the honest parties’ local views for the
execution EZ,HC , denoted by Umin

C (EZ,HC), and the highest

utility for the execution EZ,A , denoted by Umax
C (EZ,A). Note

that Umin
C (EZ,HC) and Umax

C (EZ,A) are random variables over
the coins of the adversary, the environment, the parties and
the oracles.

Definition 1. Let ✏, ✏0 be non-negative real values. A protocol
⇧ is (t, ✏, ✏0)-equilibrium with virtual payoffs (EVP) when

for every N -admissible environment Z and for every PPT
adversary A that controls an arbitrary set C of at most t parties
it holds that

Umax
C (EZ,A)  Umin

C (EZ,HC) + ✏· | Umin
C (EZ,HC) | +✏0 (1)

with overwhelming (i.e., 1� negl()) probability.

According to Eq. (1), the closer that the values of ✏ and
✏0 get to 0, the “tighter” the equilibrium is. Some examples
of utility functions of the adversary are: (i) absolute rewards,
(ii) absolute rewards minus absolute cost (profit) and (iii)
relative rewards. Note that if the adversary can deviate from
the protocol and increase significantly its utility on the view
of just one honest party with a non-negligible probability, then
the protocol does not satisfy this notion.

For the rest of the paper, we refer to the framework
presented in this section as the EVP framework.

III. THE FRUITCHAIN PROTOCOL

In this section, we devise an adaptation of the FruitChain
protocol [16] to the EVP framework of [30] outlined in
Section II. In our adaptation, we take into account the cost
of a random oracle query as well as the costs of deciding on a
new local state, validating retrieved messages, and extracting
sequences of records of transactions. Before the presentation of
our adaptation, we provide an overview of the original protocol
description.

A. Overview of the FruitChain Protocol

In the FruitChain protocol [16], miners store transactions in
fruits instead of blocks. In order for a miner to create a fruit, it
needs to perform PoW, as it does to produce blocks, yet fruit
mining has lower difficulty. In more detail, the miner performs
a 2-for-1 PoW procedure introduced in [17]. In particular, the
miner computes hashes of a specific input, where the prefix
and the suffix of the hash determine whether a block or a fruit
has been mined, respectively. Fruits are stored in blocks and
they need to be recent i.e., every fruit points to a block that
is not far from the latest block of the ledger.

At a high level, the FruitChain protocol prevents selfish
mining attacks [7] because even if an attacker withholds a
block, the fruits of this block that are still recent can be stored
in a later block. The restriction of recency exists so that an
attacker is not able to precompute an excessive amount of
fruits and reveal it later, thus disrupting the chain quality of
the protocol2.

B. Parameterization and Basic Concepts

The FruitChain PoW protocol is parameterized by:
1) A random oracle H(·) that outputs strings of length � 2.

The oracle responds to (block and fruit) mining queries.
2) A collision resistant hash function (CRHF) d(·), utilized

to digest sets of fruits.

2Chain quality was introduced in [17] and is related to the fraction of the
adversarial blocks in a sufficiently long segment of the ledger.

During each round, the environment gives inputs to the
parties and activates them in a round-robin fashion (cf. [17]).
The parties that belong to H follow the protocol and the parties
that belong to C follow the instructions of the adversary. Note
that the adversary reflects a strategic coalition that deviates
from the protocol in a way that maximizes its collective utility
(the sum of the utilities of all the parties that belong to H).

The communication between the parties is controlled by
a functionality called Diffuse functionality defined in [17].
This functionality guarantees that every message sent from
an honest party will be delivered to every other honest party
by the end of each round. It allows though the adversary to
rearrange the order of the messages during the round. This
means that the adversary is allowed to deliver its messages
first. The adversary that follows the protocol but rearranges
the messages so that it delivers its messages first is denoted
by HC. Note that the adversary may send some of its messages
to a subset of the honest parties, so the honest parties at the
end of a round can have different local view, thus local chain.
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instance, Oj can be a random oracle, a signing oracle, a
transaction validity oracle, etc. There is a limited number of
queries that each party can make to each of O1, . . . ,Ow⇧ per
round that is denoted by q1, . . . , qw⇧ , respectively. In addition,
we consider that each single query to O1, . . . ,Ow⇧ has a non-
zero cost denoted by C1, . . . , Cw⇧ , respectively.

If we fix the environment Z and the adversary A, then the
execution can be seen as a random variable denoted by EZ,A .

C. Coalition-safe Equilibria with Virtual Payoff

The notion of coalition-safe equilibria with virtual payoff

examines the executions EZ,A and EZ,HC for an arbitrary
environment Z and an arbitrary adversary A that corrupts a set
C including at most t parties, where t will be a parameter in
this definition. In EZ,HC , the adversary follows the protocol
but rearranges the messages to deliver its messages first. In
EZ,Ai the adversary deviates arbitrarily.

The notion compares the utility of the adversary in these
two executions. Both executions have the same number rounds
(the environment is admissible) so that their utilities can be
compared in a meaningful way. The utility of the adversary
will be the sum of the utilities of the parties in C. Note that
each honest party can have a different view on the utility
of each other party and thus, the utility of the adversary.
The reason is that the utility is computed based on the
rewards which, in turn, are based on the parties’, potentially
different, local chains. The notion uses the lowest utility of
the adversary among all the honest parties’ local views for the
execution EZ,HC , denoted by Umin

C (EZ,HC), and the highest

utility for the execution EZ,A , denoted by Umax
C (EZ,A). Note

that Umin
C (EZ,HC) and Umax

C (EZ,A) are random variables over
the coins of the adversary, the environment, the parties and
the oracles.

Definition 1. Let ✏, ✏0 be non-negative real values. A protocol
⇧ is (t, ✏, ✏0)-equilibrium with virtual payoffs (EVP) when

for every N -admissible environment Z and for every PPT
adversary A that controls an arbitrary set C of at most t parties
it holds that

Umax
C (EZ,A)  Umin

C (EZ,HC) + ✏· | Umin
C (EZ,HC) | +✏0 (1)

with overwhelming (i.e., 1� negl()) probability.

According to Eq. (1), the closer that the values of ✏ and
✏0 get to 0, the “tighter” the equilibrium is. Some examples
of utility functions of the adversary are: (i) absolute rewards,
(ii) absolute rewards minus absolute cost (profit) and (iii)
relative rewards. Note that if the adversary can deviate from
the protocol and increase significantly its utility on the view
of just one honest party with a non-negligible probability, then
the protocol does not satisfy this notion.

For the rest of the paper, we refer to the framework
presented in this section as the EVP framework.

III. THE FRUITCHAIN PROTOCOL

In this section, we devise an adaptation of the FruitChain
protocol [16] to the EVP framework of [30] outlined in
Section II. In our adaptation, we take into account the cost
of a random oracle query as well as the costs of deciding on a
new local state, validating retrieved messages, and extracting
sequences of records of transactions. Before the presentation of
our adaptation, we provide an overview of the original protocol
description.

A. Overview of the FruitChain Protocol

In the FruitChain protocol [16], miners store transactions in
fruits instead of blocks. In order for a miner to create a fruit, it
needs to perform PoW, as it does to produce blocks, yet fruit
mining has lower difficulty. In more detail, the miner performs
a 2-for-1 PoW procedure introduced in [17]. In particular, the
miner computes hashes of a specific input, where the prefix
and the suffix of the hash determine whether a block or a fruit
has been mined, respectively. Fruits are stored in blocks and
they need to be recent i.e., every fruit points to a block that
is not far from the latest block of the ledger.

At a high level, the FruitChain protocol prevents selfish
mining attacks [7] because even if an attacker withholds a
block, the fruits of this block that are still recent can be stored
in a later block. The restriction of recency exists so that an
attacker is not able to precompute an excessive amount of
fruits and reveal it later, thus disrupting the chain quality of
the protocol2.

B. Parameterization and Basic Concepts

The FruitChain PoW protocol is parameterized by:
1) A random oracle H(·) that outputs strings of length � 2.

The oracle responds to (block and fruit) mining queries.
2) A collision resistant hash function (CRHF) d(·), utilized

to digest sets of fruits.

2Chain quality was introduced in [17] and is related to the fraction of the
adversarial blocks in a sufficiently long segment of the ledger.
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Let 𝑁 be the number of  rounds and 𝑛 be the number of  parties. Let 𝑅! be the rewards per 
fruit, 𝐶"# be the cost of  a query to the longest chain oracle, 𝐶"$% be the cost of  a query to the 

light transaction verification oracle, and 𝑞 be the number of  RO queries (per party per round). 
Assume that the block mining hardness parameter is 𝑝& = Ω( '

()
) and the fruit mining 

hardness parameter is 𝑝! <
'
*

. Then, the FruitChain centralized pool is a 𝑛 − 1, 0, 𝜖+ -EVP, 
where 𝜖′ is dominated by the following three additive approximation factors:

1. 𝑂 𝑁 ⋅ 𝑛
!
" ⋅ log𝜅 ⋅ 𝑝! ⋅ 𝑅!

2. 𝑂 𝑁
#
$ ⋅ log𝜅 ⋅ 𝐶"#

3. 𝑂 𝑁 ⋅ 𝑛 ⋅ log𝜅 ⋅ 𝐶"$%
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• Dominant additive approximation factors

• 𝑂 𝑁 ⋅ 𝑛
!
" ⋅ log𝜅 ⋅ 𝑝' ⋅ 𝑅' : appears because the EVP notion compares the 

exact profit of  the honest and adversarial strategy with overwhelming probability. 

• 𝑂 𝑁
#
$ ⋅ log𝜅 ⋅ 𝐶#( : is due to the same reason as above.

• 𝑂 𝑁 ⋅ 𝑛 ⋅ log𝜅 ⋅ 𝐶#$% : the honest parties check the validity of  the payments 
(typically, this cost is small).



Discussion and key takeaways

• Our results indicate that, apart from reducing the variance of  the rewards, 
further research is needed to incentivize decentralization in PoW protocols.
• Other proposals (e.g., Smartpool [USENIX 2017], StrongChain [USENIX 

2019]) where miners validate the transactions, have similar tendency to 
centralization (i.e., collusion to share verification costs).
• Candidate mitigation strategy: construct PoW puzzles that disincentivize the 

formation of  pools, while being applicable to blockchain protocols that satisfy 
fairness (like FruitChain)
• Promising starting point: GSCS [Wang et al., IEEE Access 2020] deploys a non-

parallelizable PoW puzzle used in a consensus mechanism that guarantees fairness.
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